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The purpose of this note is to give an informal introduction to p-adic integers. Our
treatment is inspired by the beginner-friendly book [1], but we will not dwell upon the
topological properties here. We will try to understand the algebraic structure of p-adic
integers.

Definition 1. Let p be a prime. The ring of p-adic integers Zp is the set of all infinite
sequences

x = (x1 mod p, x2 mod p2, x3 mod p3, . . .) ∈
∏
n>1

Z/(pn)

such that
xn+1 ≡ xn mod pn

for all n > 1. Addition and multiplication are defined componentwise.

In fancy words, Zp is the inverse limit of the following diagram

· · · Z/(pn) Z/(pn−1) · · · Z/(p2) Z/(p),
φn φ2

where φn : Z/(pn) → Z/(pn−1) is the canonical map given by x mod pn 7→ x mod pn−1.
(We will not use the “categorical language” anywhere in this note and the reader who has
not seen this notion before may completely ignore it.)

It is clear from the definition that the additive identity is

0 = (0 mod p, 0 mod p2, 0 mod p3, . . .)

and the multiplicative identity is

1 = (1 mod p, 1 mod p2, 1 mod p3, . . .).

We will try to understand the basic properties of Zp by working with a concrete exam-
ple. To that end, let p = 7. Consider

x = (1 mod 7, 22 mod 72, 71 mod 73, . . .) ∈ Z7.

Notice that the coordinates satisfy the congruence condition. In fact, 22 = 1 + 3p and
71 = 22+p2 = 1+3p+p2. Note that this representation of 71 contains information about
previous entries. Continuing this way, we can associate to any z = (z1 mod p, z2 mod
p2, . . .) ∈ Z7 a unique infinite formal sum

α0 + α1p+ α2p
2 + α3p

3 + · · · ,

with 0 6 αi 6 6 for all i. (The reason we write p instead of 7 is to draw an analogy
between the powers of p and the powers of X in a formal power series.) We will call this
the p-adic expansion of z. For example, the p-adic expansion of x above is

1 + 3p+ p2 + · · · .
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Notice that the partial sum Sn = α0 + α1p + α2p
2 + · · · + αn−1p

n−1 gives zn modulo pn.
We may also represent the p-adic expansion as a string of digits in base p that extends
indefinitely to left: · · · 131.

Now consider another element

y = (5 mod 7, 47 mod 72, 145 mod 73, . . .) ∈ Z7.

Its p-adic expansion is

5 + 6p+ 2p2 + · · · .

If we add x and y, we get

x+ y = (6 mod 7, 69 mod 72, 216 mod 73, . . .)

= (6 mod 7, 20 mod 72, 216 mod 73, . . .).

The p-adic expansion of (6 mod 7, 20 mod 72, 216 mod 73, . . .) is

6 + 2p+ 4p2 + · · · .

Let us now add the p-adic expansions of x and y. It is more-or-less like the addition of
polynomials or formal power series in X. However, a little more care is needed as the
following example illustrates:

(1 + 3p+ p2 + · · · ) + (5 + 6p+ 2p2 + · · · ) = 6 + 9p+ 3p2 + · · · .

It doesn’t quite look like the p-adic expansion of x + y. Where did we go wrong? Well,
the catch is that we only allow our αi to vary between 0 to 6, so 9 in the second sum is an
anomaly. To correct it, write 9p = (2+p)p = 2p+p2 and add the newly obtained p2 to 3p2

to get 4p2. (The reader may recognise this is as the p-adic version of carrying). This should
give an idea about how to add p-adic expansions. The reader might find it illuminating
to verify that 6 + 6p+ 6p2 + 6p3 + · · · is the additive inverse of 1 = 1 + 0p+ 0p2 + · · · .

Let us now figure out the multiplication of formal sums. First we multiply x and y
termwise:

xy = (1 mod 7, 22 mod 72, 71 mod 73, . . .)(5 mod 7, 47 mod 72, 145 mod 73, . . .)

= (5 mod 7, 22 · 47 mod 72, 71 · 145 mod 73, . . .)

= (5 mod 7, 5 mod 72, 5 mod 73, . . .).

So the p-adic expansion of xy is 5+0p+0p2 + · · · . Do we get the same sum if we multiply
the p-adic expansions of x and y? Again, multiplication of formal sums is similar to that
of polynomials, but we need to add carrys whenever necessary. We demonstrate multi-
plication below. For simplicity, we discard the cubic and higher degree terms whenever
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they appear in the calculation.

(1 + 3p+ p2 + · · · ) · (5 + 6p+ 2p2 + · · · )
= 5 + 6p+ 2p2 + 15p+ 18p2 + 5p2 + · · ·
= 5 + 6p+ 2p2 + (1 + 2p)p+ (4 + 2p)p2 + 5p2 + · · ·
= 5 + 6p+ 2p2 + p+ 2p2 + 4p2 + 5p2 + · · ·
= 5 + (p+ 6p) + (2p2 + 2p2 + 4p2 + 5p2) + · · ·
= 5 + 0p+ p2 + 13p2 + · · ·
= 5 + 0p+ 0p2 + · · · .

A careful reader will note that we have not used the primality of 7 anywhere in the
above discussions. Of course, everything we have done until now can be done with any
other natural number. The importance of being a prime comes from the fact that for
a prime p, Zp is an integral domain, that is, any two nonzero elements have a nonzero
product. As a non-example, here are the beginning terms of two elements in the ring of
10-adic integers that give zero as their product:

(5 mod 10, 25 mod 102, 125 mod 103, . . .)(2 mod 10, 12 mod 102, 112 mod 103, . . .)

= (10 mod 10, 300 mod 102, 14000 mod 103, . . .)

= (0 mod 10, 0 mod 102, 0 mod 103, . . .).

Of course, some readers may not find this “example” satisfying. There is another nice
way to construct zerodivisors in Z10; find a non-trivial idempotent element. See Richard
Borcherds’s lecture to find out more: https://youtu.be/VTtBDSWR1Ac.

Now we prove that Zp is an integral domain for a prime p. Let x,y be two nonzero
elements in Zp. Suppose their p-adic expansions are given by

x = αnp
n + αn+1p

n+2 + αn+3p
n+3 + · · ·

and
y = βmp

m + βm+1p
m+2 + βm+3p

m+3 + · · ·
with 0 < αn,βm 6 p−1. The first nonzero coefficient of xy is the coefficient of pn+m and
it is αnβm modulo p. Since p doesn’t divide αn or βm, it doesn’t divide αnβm as well.
Thus the product has a nonzero coefficient and hence is not zero.

Notice that we can map any x ∈ Z to (x mod p, x mod p2, . . .) ∈ Zp. This is an injective
map since the only element in Z that is divisible by all positive powers of p is 0. Through
this map, we can think of Z as a subring of Zp.

Suppose x is a positive integer and consider its image is Zp. Its p-adic expansion is a
finite series; in fact, it is the base p representation of x. For negative integers, it is not
finite. For example, the image of −1 in Z7 is

(−1 mod 7,−1 mod 72,−1 mod 73, . . .) = (6 mod 7, 48 mod 72, 342 mod 73, . . .).

and hence its p-adic expansion is 6 + 6p + 6p2 + 6p3 + · · · . In fact, this is the worst that
can happen. That is, given x ∈ Z, the p-adic expansion of x is either a finite series or an
infinite series with almost all coefficients p− 1.
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Let us now describe the invertible elements of Zp. For a real number x such that |x| < 1,
we have the geometric series:

1
1 − x

= 1 + x+ x2 + x3 + · · · .

Notice that the RHS makes sense in Zp if we replace x by p. This suggests that the integer
1 − p may be invertible in Zp with inverse

1 + p+ p2 + p3 + · · · .

We might even speculate that 1 − pz (z ∈ Zp) is invertible with inverse

1 + pz+ (pz)2 + (pz)3 + · · · .

The above expression, as written, is not a p-adic expansion, but maybe we can expand it
into a p-adic expansion? Finally, we see that p is not invertible, since

p · (α0 + α1p+ α2p
2 + α3p

3 + · · · ) = α0p+ α1p
2 + α2p

3 + · · · 6= 1 + 0p+ 0p2 + · · · .

Hence we conjecture that an element z in Zp is invertible if and only if it is not divisible
by p. Let us prove this formally. Our proof is based on [2, p. 12].

Suppose x is a multiple of p, say x = pz. Then

x = (p mod p,p mod p2, . . .)(z1 mod p, z2 mod p2, . . .)

= (0 mod p,pz2 mod p2, . . .),

and there is no way we can make the first coordinate 1 by multiplying by some other
element in Zp. (Essentially, this is the same proof as above.)

Now suppose x = (x1 mod p, x2 mod p2, . . .) is not a multiple of p. If each xn is invert-
ible in Z/(pn), then (x−1

1 mod p, x−1
2 mod p2, . . .) is a possible candidate for the inverse of

x in Zp. We need to verify that the entries satisfy

x−1
n+1 ≡ x−1

n mod pn,

but that is straightforward. Thus it suffices to prove that if xn is not a multiple of p in
Z/(pn), then it is invertible. By hypothesis, xn mod p is a nonzero element of Z/(p) and
hence is invertible in Z/(p), i.e., there exist integers y, z such that xny = 1 − pz. So
xny ≡ 1 − pz mod pn and 1 − pz is invertible modulo pn since

(1 − pz)(1 + pz+ · · ·+ pn−1zn−1) = 1 − pnzn ≡ 1 mod pn.

Thus y(1 + pz+ · · ·+ pn−1zn−1) is the inverse of xn in Z/(pn).
Notice that the above proposition implies that Zp is a local ring with pZp as its maximal

ideal. In fact, with little work, now one can show that Zp is a DVR (a PID with a unique
nonzero prime ideal). For details, we refer the reader to [2].

The field of fractions of Zp is denoted by Qp. Topologically, Qp is a complete metric
space and can be realised as the completion of Q with respect to a certain metric. Thus
they are as important as the real numbers. Moreover, Zp is analogous to [0, 1], at least
in a topological sense. This kind of analogies leads to a view-point (or a philosophy) in
number theory called the local-global principle. It advocates to study a problem over
Q by studying it over various completions of Q, i.e., over R and Qp for all primes p.
Interested readers may consult any good book on number theory to see it in action.
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