# FORM RINGS AND REGULAR SEQUENCES 

WAYNE NG KWING KING AND SREEHARI SURESH BABU

## 1. Introduction

The purpose of this write-up is to describe the results in the paper, Form rings and regular sequences [8], by P. Valabrega and G. Valla. In it, they study the relationship between an ideal $\mathfrak{b}=\left(f_{1}, \ldots, f_{r}\right) \subset A$ and the form ideal $\mathfrak{b}^{*}$ of the associated graded ring $G_{A}(\mathfrak{a})$. The authors were motivated by a result of Hironaka on initial forms and they wanted to extend it to a general situation (see Remark 3.8). Hironaka's interest in these algebraic objects comes from their intimate connection with geometry. Hironaka, in his paper on the resolution of singularities over a field of characteristic 0 , studied various properties of the associated graded ring to get a better understanding of singularities. We briefly describe this geometric connection now.

Let $X \subset A^{n}$ be a variety defined by the ideal $J=\left(f_{1}, \ldots, f_{r}\right)$ and suppose that $0 \in X$. We define the tangent space to $X$ at 0 as the variety defined by the homogeneous ideal generated by the linear forms of all $f \in J$. The tangent cone to $X$ at 0 is a much finer invariant than the tangent space and is extremely useful when 0 is a singular point. For $f \in k\left[x_{1}, \ldots, x_{n}\right]$, let $f^{*}$ denote the homogeneous component of $f$ of the lowest degree (the leading form of $f$ ), and let $J^{*}$ be the ideal generated by the leading forms of all $f \in J$. Then the tangent cone to $X$ at 0 is the variety defined by the homogeneous ideal $J^{*}$. If $R$ is the coordinate ring of $X$, then the coordinate ring of the tangent cone is the associated graded ring $G_{\mathfrak{m}}(R)$, where $\mathfrak{m}$ denotes the maximal ideal $\left(x_{1}, \ldots, x_{n}\right)$ of $R(c f$. Lemma 2.1).

More generally, let $X$ be an abstract algebraic variety, $x$ a point of $X$, and $\left(\mathscr{O}_{x, x}, \mathfrak{m}\right)$ be the local ring of $X$ at $x$. Then the tangent cone to $X$ at $x$ is the spectrum of the associated graded ring of $\mathscr{O}_{X, x}$ with respect to the maximal ideal: $G_{\mathfrak{m}}(\mathscr{O})=\bigoplus_{n=0}^{\infty} \mathfrak{m}^{\mathfrak{n}} / \mathfrak{m}^{\mathfrak{n}+1}$.

The main theorems in the paper are the following:
(i) A necessary and sufficient condition for the form ideal $\mathfrak{b}^{*}$ to be generated by the initial forms of the generators of $\mathfrak{b}$ (Theorem 2.3).
(ii) A necessary and sufficient condition for $\mathfrak{b}^{*}$ to be generated by a regular sequence (Theorem 3.3).
As applications of the above, we prove some results related to the Cohen-Macaulayness of $\mathrm{G}_{\mathrm{A}}(\mathfrak{a})$.

## 2. Form Rings and ideals

Let $\mathfrak{a}$ be an ideal of a Noetherian ring $A$. The form ring of $A$ relative to $\mathfrak{a}$, which is denoted by $G_{A}(\mathfrak{a})$, is defined to be the graded $\mathcal{A} / \mathfrak{a}$-algebra

$$
G_{A}(\mathfrak{a})=\bigoplus_{n=0}^{\infty} \frac{\mathfrak{a}^{\mathfrak{n}}}{\mathfrak{a}^{\mathfrak{n}+1}}=\frac{A}{\mathfrak{a}} \oplus \frac{\mathfrak{a}}{\mathfrak{a}^{2}} \oplus \frac{\mathfrak{a}^{2}}{\mathfrak{a}^{3}} \oplus \cdots
$$

The multiplication in $G_{A}(\mathfrak{a})$ is defined as follows: if $a+\mathfrak{a}^{\mathfrak{n}+1} \in \mathfrak{a}^{n} / \mathfrak{a}^{\mathfrak{n}+1}$ and $\mathfrak{b}+\mathfrak{a}^{\mathfrak{m}+1} \in$ $\mathfrak{a}^{\mathfrak{m}} / \mathfrak{a}^{\mathfrak{m}+1}$, then

$$
\left(a+\mathfrak{a}^{\mathfrak{n}+1}\right) \cdot\left(b+\mathfrak{a}^{\mathfrak{m}+1}\right):=\mathfrak{a b}+\mathfrak{a}^{\mathfrak{m}+\mathfrak{n}+1} \in \mathfrak{a}^{\mathfrak{m}+\mathfrak{n}} / \mathfrak{a}^{\mathfrak{m}+\mathfrak{n}+1} .
$$

This is easily seen to be independent of the choice of $a$ and $b$.
Given $a \in A$, let $v(a)$ be the largest integer $n$ such that $a \in \mathfrak{a}^{n}$. The initial form of $a$ is defined to be the residue class of $\mathfrak{a}$ in $\mathfrak{a}^{v(a)} / \mathfrak{a}^{v(a)+1}$ and is denoted by $a^{*}$. If $a \in \cap_{n \geqslant 1} \mathfrak{a}^{\mathfrak{n}}$, then we set $v(a)=\infty$ and $a^{*}=0$. The map $a \mapsto a^{*}$ is not a homomorphism of abelian groups, but it behaves "almost" like a homomorphism. More precisely, if $a, b \in A$, then either $a^{*}+b^{*}=(a+b)^{*}$ or $a^{*}+b^{*}=0$. Similarly, either $a^{*} b^{*}=(a b)^{*}$ or $a^{*} b^{*}=0$.

Let $\mathfrak{b}$ be an ideal of $\boldsymbol{A}$. The form ideal of $\mathfrak{b}$ relative to $\mathfrak{a}$ is defined to be the homogeneous ideal of $G_{A}(\mathfrak{a})$ generated by all the initial forms of the elements in $\mathfrak{b}$ and is denoted by $\mathfrak{b}^{*}$. The $\mathfrak{n}$-th graded component of $\mathfrak{b}^{*}$ is equal to $\left(\mathfrak{b} \cap \mathfrak{a}^{\mathfrak{n}}+\mathfrak{a}^{\mathfrak{n}+1}\right) / \mathfrak{a}^{\mathfrak{n}+1}$.
Lemma 2.1. With notations as above,

$$
\mathrm{G}_{\mathrm{A}}(\mathfrak{a}) / \mathfrak{b}^{*} \cong \mathrm{G}_{\mathrm{A} / \mathfrak{b}}(\mathfrak{b}+\mathfrak{a} / \mathfrak{b})
$$

Proof. For us, a ring homomorphism between graded rings always means a degree-preserving map, so it is enough to prove the above isomorphism on the level of graded components. The latter follows from the following string of isomorphisms:

$$
\frac{(\mathfrak{b}+\mathfrak{a} / \mathfrak{b})^{\mathfrak{n}}}{(\mathfrak{b}+\mathfrak{a} / \mathfrak{b})^{\mathfrak{n}+1}} \cong \frac{\mathfrak{b}+\mathfrak{a}^{\mathfrak{n}}}{\mathfrak{b}+\mathfrak{a}^{\mathfrak{n}+1}}=\frac{\mathfrak{b}+\mathfrak{a}^{\mathfrak{n}+1}+\mathfrak{a}^{\mathfrak{n}}}{\mathfrak{b}+\mathfrak{a}^{\mathfrak{n}+1}} \cong \frac{\mathfrak{a}^{n}}{\left(\mathfrak{b}+\mathfrak{a}^{\mathfrak{n}+1}\right) \cap \mathfrak{a}^{n}}=\frac{\mathfrak{a}^{n}}{\mathfrak{b} \cap \mathfrak{a}^{\mathfrak{n}}+\mathfrak{a}^{\mathfrak{n}+1}}
$$

Using the above isomorphism, it is easy to see that $\mathfrak{b}^{*}=G_{\mathcal{A}}(\mathfrak{a})$ if and only if $\mathfrak{a}$ and $\mathfrak{b}$ are comaximal. Thus, we will always assume that $\mathfrak{a}$ and $\mathfrak{b}$ are proper and are not comaximal.

If $A$ is Noetherian, then $G_{A}(\mathfrak{a})$ is Noetherian. In fact, if $\mathfrak{a}=\left(a_{1}, \ldots, a_{r}\right)$ and $\alpha_{i}=$ $a_{i} \bmod \mathfrak{a}^{2}$, then

$$
G_{A}(\mathfrak{a}) \cong(A / a)\left[\alpha_{1}, \ldots, \alpha_{r}\right] .
$$

In particular, $\mathfrak{b}^{*}$ is a finitely generated ideal of $\mathrm{G}_{\mathrm{A}}(\mathfrak{a})$. However, $\mathfrak{b}^{*}$ is generally not generated by the initial forms of a given set of generators of $\mathfrak{b}$.
Example 2.2. Let $A=k \llbracket X, Y, Z \rrbracket, \mathfrak{a}=(X, Y, Z)$ and $\mathfrak{b}=\left(X Z-Y^{3}, Y Z-X^{4}, Z^{2}-X^{3} Y^{2}\right)$. By abuse of notation, we write $X, Y, Z$ to denote their own initial forms in $G_{A}(\mathfrak{a})$. Then $G_{A}(\mathfrak{a}) \cong k[X, Y, Z]$. Moreover, $\left(X Z-Y^{3}\right)^{*}=X Z,\left(Y Z-X^{4}\right)^{*}=Y Z$ and $\left(Z^{2}-X^{3} Y^{2}\right)^{*}=Z^{2}$. However, $X Z, Y Z$ and $Z^{2}$ do not generate $\mathfrak{b}^{*}$. For example,

$$
-Y\left(X Z-Y^{3}\right)+X\left(Y Z-X^{4}\right)=Y^{4}-X^{5} \in \mathfrak{b}
$$

so $\left(Y^{4}-X^{5}\right)^{*}=Y^{4} \in \mathfrak{b}^{*}$. In fact, $\mathfrak{b}^{*}=\left(X Z, Y Z, Z^{2}, Y^{4}\right)$.
Let $\mathfrak{b}=\left(f_{1}, \ldots, f_{r}\right)$. Notice that the $n$-th homogeneous component of $\left(f_{1}^{*}, \ldots, f_{r}^{*}\right) \subset$ $G_{A}(\mathfrak{a})$ is equal to $\left(\sum_{\mathfrak{i}=1}^{\mathfrak{r}} \mathfrak{a}^{\mathfrak{n}-\mathfrak{p}_{\mathfrak{i}}} \mathfrak{f}_{\mathfrak{i}}+\mathfrak{a}^{\mathfrak{n}+1}\right) / \mathfrak{a}^{\mathfrak{n + 1}}$. Thus, if $\mathfrak{a}^{\mathfrak{n}} \cap \mathfrak{b}=\sum_{\mathfrak{i}=1}^{\mathfrak{r}} \mathfrak{a}^{\mathfrak{n}-\mathfrak{p}_{\mathfrak{i}}} \mathfrak{f}_{\mathfrak{i}}$, then $\mathfrak{b}_{\mathfrak{n}}^{*}=\left(f_{1}^{*}, \ldots, f_{r}^{*}\right)_{\mathfrak{n}}$ for all $n \geqslant 0$, and hence $\mathfrak{b}^{*}=\left(f_{1}^{*}, \ldots, f_{r}^{*}\right)$. The following theorem says that this condition is necessary as well.

Theorem 2.3. If $\mathfrak{a}$ and $\mathfrak{b}=\left(f_{1}, \ldots, f_{r}\right)$ are ideals of $\mathcal{A}$, then $\mathfrak{b}^{*}=\left(f_{1}^{*}, \ldots, f_{r}^{*}\right)$ in $G_{A}(\mathfrak{a})$ if and only if for all $\mathrm{n} \geqslant 0$ the following equality holds:

$$
\mathfrak{a}^{\mathfrak{n}} \cap \mathfrak{b}=\sum_{\substack{i=1 \\ 2}}^{\mathfrak{r}} \mathfrak{a}^{\mathfrak{n}-\mathfrak{p}_{\mathfrak{i}}} \mathfrak{f}_{\mathfrak{i}},
$$

where $p_{i}=v\left(f_{i}\right), \mathfrak{i}=1, \ldots, r$.
Proof. Suppose that $\mathfrak{b}^{*}=\left(f_{1}^{*}, \ldots, f_{r}^{*}\right)$. Then $\mathfrak{b}_{n}^{*}=\left(f_{1}^{*}, \ldots, f_{r}^{*}\right)_{n}$ for all $n \geqslant 0$, so we have

$$
\mathfrak{a}^{n} \cap \mathfrak{b} \subseteq \sum_{\mathfrak{i}=1}^{r} \mathfrak{a}^{\mathfrak{n}-\mathfrak{p}_{\mathfrak{i}}} \mathfrak{f}_{\mathfrak{i}}+\mathfrak{a}^{\mathfrak{n + 1}} \text { for all } n \geqslant 0
$$

Intersecting with $\mathfrak{b}$, we get

$$
\mathfrak{a}^{n} \cap \mathfrak{b} \subseteq\left(\sum_{i=1}^{r} \mathfrak{a}^{\mathfrak{n}-\mathfrak{p}_{i}} f_{\mathfrak{i}}+\mathfrak{a}^{\mathfrak{n}+1}\right) \cap \mathfrak{b}=\sum_{\mathfrak{i}=1}^{r} \mathfrak{a}^{n-\mathfrak{p}_{i}} f_{\mathfrak{i}}+\mathfrak{a}^{\mathfrak{n}+1} \cap \mathfrak{b}
$$

Proceeding inductively, we see that

$$
\mathfrak{a}^{\mathfrak{n}} \cap \mathfrak{b} \subseteq \bigcap_{\mathfrak{t} \geqslant 0} \sum_{i=1}^{r} \mathfrak{a}^{\mathfrak{n}-\mathfrak{p}_{\mathfrak{i}}} \mathfrak{f}_{\mathfrak{i}}+\mathfrak{a}^{\mathfrak{n}+\mathfrak{t}} \cap \mathfrak{b}
$$

Now the Artin-Rees lemma guarantees the existence of an integer $\mathfrak{q} \geqslant 0$ such that $\mathfrak{a}^{\mathfrak{n}+\boldsymbol{t}} \cap \mathfrak{b}=$ $\mathfrak{a}^{\mathfrak{n + t - q}}\left(\mathfrak{a}^{\mathfrak{q}} \cap \mathfrak{b}\right)$ for all $\mathfrak{n}+t \geqslant q$. Let $d \geqslant \max _{1 \leqslant i \leqslant r}\left\{n-p_{i}\right\}$. If $t \geqslant q-n+d$, then $n+t-q \geqslant d \geqslant n-p_{i}$ for each $\mathfrak{i}$, so

$$
\mathfrak{a}^{\mathfrak{n}+\mathfrak{t}-\mathfrak{q}}\left(\mathfrak{a}^{\mathrm{q}} \cap \mathfrak{b}\right) \subseteq \mathfrak{a}^{\mathrm{d}} \mathfrak{b} \subseteq \sum_{\mathfrak{i}=1}^{r} \mathfrak{a}^{\mathfrak{n}-\mathfrak{p}_{\mathfrak{i}}} \mathfrak{f}_{\mathfrak{i}}
$$

Thus,

$$
\begin{aligned}
\mathfrak{a}^{n} \cap \mathfrak{b} & \subseteq \bigcap_{t \geqslant \mathfrak{q}-n+d} \sum_{i=1}^{r} \mathfrak{a}^{n-\mathfrak{p}_{i}} f_{i}+\mathfrak{a}^{n+t} \cap \mathfrak{b} \\
& =\bigcap_{t \geqslant \mathfrak{q}-n+d} \sum_{i=1}^{r} \mathfrak{a}^{n-\mathfrak{p}_{i}} f_{i}+\mathfrak{a}^{n+t-\mathfrak{q}}\left(\mathfrak{a}^{q} \cap \mathfrak{b}\right) \subseteq \sum_{i=1}^{r} \mathfrak{a}^{n-\mathfrak{p}_{i}} f_{i} .
\end{aligned}
$$

The other inclusion is trivial.
Remark 2.4. If $A$ is a local ring, the coarser relation

$$
\mathfrak{a}^{n} \cap \mathfrak{b} \subseteq \bigcap_{t \geqslant 0} \sum_{i=1}^{r} \mathfrak{a}^{n-p_{i}} f_{i}+\mathfrak{a}^{n+t}
$$

and Krull's intersection theorem are enough to conclude.
Let us have a quick discussion about the height of the form ideal. We remark that if $\mathfrak{a} \subseteq \mathfrak{b}$, then ht $\mathfrak{b}=\operatorname{ht} \mathfrak{b}^{*}$. Moreover, we have the following Krull's height theorem-type of result:

Proposition 2.5. If $\mathfrak{a}$ and $\mathfrak{b}=\left(\mathfrak{f}_{1}, \ldots, f_{r}\right)$ are ideals of $\mathcal{A}$ such that $\mathfrak{a}+\mathfrak{b} \neq \mathcal{A}$, then $h t\left(\mathfrak{b}^{*}\right) \leqslant r$.
Proof. Let $\mathfrak{m}$ be a maximal ideal containing both $\mathfrak{a}$ and $\mathfrak{b}$. An application of Krull's height theorem and it's converse gives us the inequality ht $\mathfrak{m} \leqslant h t(\mathfrak{m} / \mathfrak{b})+r$. Since $(\mathfrak{a}+\mathfrak{b}) / \mathfrak{b} \subseteq \mathfrak{m} / \mathfrak{b}$, the height of the initial ideal $(\mathfrak{m} / \mathfrak{b})^{*} \subseteq \mathrm{G}_{\mathcal{A} / \mathfrak{b}}(\mathfrak{b}+\mathfrak{a} / \mathfrak{b})$ is the same as that of $\mathfrak{m} / \mathfrak{b}$ by the above remark. Under the natural isomorphism described in Lemma 2.1, $(\mathfrak{m} / \mathfrak{b})^{*}$ corresponds to the ideal $\mathfrak{m}^{*} / \mathfrak{b}^{*}$. Thus,

$$
h t \mathfrak{m} \leqslant h t\left(\mathfrak{m}^{*} / \mathfrak{b}^{*}\right)+r \leqslant h t \mathfrak{m}^{*}-h t \mathfrak{b}^{*}+r=h t \mathfrak{m}-h t \mathfrak{b}^{*}+r,
$$

and the desired inequality follows.

Example 2.6. If in addition $h t\left(f_{1}{ }^{*}, \ldots, f_{r}{ }^{*}\right)=r$, then we see that $h t \mathfrak{b}^{*}=r$. But this does not guarantee the equality $\mathfrak{b}^{*}=\left(f_{1}{ }^{*}, \ldots, f_{r}{ }^{*}\right)$. For example, let $A=k \llbracket X, Y, Z \rrbracket /(X Z-$ $\left.Y^{3}, Y Z-X^{4}, Z^{2}-X^{3} Y^{2}\right)=k \llbracket x, y, z \rrbracket, \mathfrak{a}=(x, y, z)$ and $\mathfrak{b}=(x)$. Using Lemma 2.1 and Example 2.2, it is easy to see that $\mathrm{G}_{\mathrm{A}}(\mathfrak{a}) \cong \mathrm{k}\left[\mathrm{T}_{1}, \mathrm{~T}_{2}, \mathrm{~T}_{3}\right] /\left(\mathrm{T}_{1} \mathrm{~T}_{3}, \mathrm{~T}_{2} \mathrm{~T}_{3}, \mathrm{~T}_{3}^{2}, \mathrm{~T}_{2}^{4}\right)=\mathrm{k}\left[\mathrm{t}_{1}, \mathrm{t}_{2}, \mathrm{t}_{3}\right]$. The initial form of $x$ corresponds to the element $t_{1}$. We claim that $h t\left(t_{1}\right)=1$. Indeed, $h t\left(t_{1}\right) \leqslant 1$ by Krull's principal ideal theorem. Next, notice that the unique minimal prime of $G_{A}(\mathfrak{a})$ is $\left(t_{2}, t_{3}\right)$, and since $t_{1} \notin\left(t_{2}, t_{3}\right)$, $\operatorname{ht}\left(t_{1}\right)=1$. This in turn implies that $\operatorname{ht}\left(\mathfrak{b}^{*}\right)=1$. However, $y^{3} \in \mathfrak{a}^{3} \cap \mathfrak{b}$, but $y^{3} \notin \mathfrak{a}^{2} x$. Hence $\mathfrak{b}^{*} \neq\left(x^{*}\right)$ by Theorem 2.3.

## 3. Regular sequences in $\mathrm{G}_{\mathrm{A}}(\mathfrak{a})$

Let $A$ be a Noetherian ring, $\mathfrak{a} \subseteq A$ an ideal and $f_{1}, \ldots, f_{r} \in A$ such that $\mathfrak{a}$ and $\left(f_{1}, \ldots, f_{r}\right)$ are not comaximal. Results on necessary and sufficient conditions for $f_{1}^{*}, \ldots, f_{r}^{*}$ to be a $G_{A}(\mathfrak{a})$-sequence are looked into, especially in the case when $\mathcal{A}$ is local.

We fix the following notation: let $\mathfrak{b}_{\mathfrak{i}}:=\left(\mathfrak{f}_{1}, \ldots, \mathfrak{f}_{\mathfrak{i}}\right)$ for $\mathfrak{i}=1, \ldots, r$ and $\mathfrak{b}_{0}:=(0)$. Furthermore, let $\overline{\mathrm{I}}$ be the topological closure of an ideal I with respect to the $\mathfrak{a}$-adic topology.
Proposition 3.1. If $\mathfrak{a}$ and $\mathfrak{b}=\left(f_{1}, \ldots, f_{r}\right)$ are ideals of $A$ such that $f_{1}^{*}, \ldots, f_{r}^{*}$ is a $G_{A}(\mathfrak{a})$ sequence, then $\mathfrak{b}^{*}=\left(f_{1}^{*}, \ldots, f_{r}^{*}\right)$.
Proof. We proceed by induction on r : when $\mathrm{r}=1, \mathfrak{b}=\left(\mathrm{f}_{1}\right)$ and $\mathrm{f}_{1}^{*}$ is a nonzerodivisor. Therefore for every $g \in A$, we have $\left(g f_{1}\right)^{*}=g^{*} f_{1}^{*}$, which shows $\mathfrak{b}^{*}=\left(f_{1}^{*}\right)$. Suppose now that the statement is true for $\mathrm{r}-1$.

Let $\mathfrak{a} \in \mathfrak{a}^{\mathfrak{n}} \cap \mathfrak{b}$ and let $t$ be the largest integer such that $\mathfrak{a} \in \mathfrak{b}_{r-1}+\mathrm{f}_{\mathrm{r}} \mathfrak{a}^{\mathfrak{t}}$ (if such a $t$ does not exist, set $t=\infty$ ). Since $a \in \mathfrak{b}_{r-1}+f_{r} \mathfrak{a}^{t}$, one can write $\mathfrak{a}=x+f_{r} y$ for some $x \in \mathfrak{b}_{r-1}$ and some $y$ with $v(y)=t$. If $t+p_{r}<n$, then $f_{r} y \in\left(\mathfrak{a}^{n}+\mathfrak{b}_{r-1}\right) \cap \mathfrak{a}^{\mathfrak{t}+\mathfrak{p}_{r}} \subseteq\left(\mathfrak{a}^{\mathfrak{t}+\mathfrak{p}_{r}+1}+\mathfrak{b}_{r-1}\right) \cap \mathfrak{a}^{\mathfrak{t}+\mathfrak{p}_{r}}=$ $\mathfrak{a}^{\mathfrak{t}+\mathfrak{p}_{r}+1}+\left(\mathfrak{b}_{r-1} \cap \mathfrak{a}^{\mathfrak{t}+\mathfrak{p}_{\mathfrak{r}}}\right)$. So $f_{r}^{*} y^{*} \in\left(\mathfrak{b}_{r-1}\right)^{* 1}$, and since $\left(\mathfrak{b}_{r-1}\right)^{*}=\left(f_{1}^{*}, \ldots, f_{r-1}^{*}\right)$ by the induction hypothesis, this implies $y^{*} \in\left(\mathfrak{b}_{r-1}\right)^{*}$ because by assumption $f_{r}^{*}$ is a nonzerodivisor on $G_{A}(\mathfrak{a}) /\left(f_{1}^{*}, \ldots, f_{r-1}^{*}\right)$. Hence $y \in \mathfrak{b}_{r-1} \cap \mathfrak{a}^{\mathfrak{t}}+\mathfrak{a}^{\mathfrak{t}+1}$, which implies $\mathfrak{a} \in \mathfrak{b}_{r-1}+\mathfrak{f}_{r} \mathfrak{a}^{\mathfrak{t}+1}$, contradicting the maximality of $t$.
 $\mathfrak{f}_{r} \mathfrak{a}^{\mathfrak{n}-\mathfrak{p}_{r}}$, where the last equality is obtained by the induction hypothesis and Theorem 2.3.

Remark 3.2. The converse of Proposition 3.1 however is false, even when $\mathcal{A}$ is local. Consider the following example: let $\mathcal{A}=k \llbracket X, Y \rrbracket /(X Y)=k \llbracket x, y \rrbracket, \mathfrak{b}=(x), \mathfrak{a}=(x, y)$; we have $\mathfrak{a}^{\mathfrak{n}} \cap \mathfrak{b}=\left(x^{\mathfrak{n}}, y^{\mathfrak{n}}\right) \cap(x)=\left(x^{\mathfrak{n}}\right)+\left(y^{\mathfrak{n}}\right) \cap(x)=\left(x^{\mathfrak{n}}\right)=\mathfrak{a}^{\mathfrak{n}-1} \mathfrak{b}$. Hence by Theorem 2.3, $\mathfrak{b}^{*}=\left(x^{*}\right)$. However $G_{\mathrm{A}}(\mathfrak{a})=\mathrm{k}\left[\mathrm{T}_{1}, \mathrm{~T}_{2}\right] /\left(\mathrm{T}_{1} \mathrm{~T}_{2}\right)=\mathrm{k}\left[\mathrm{t}_{1}, \mathrm{t}_{2}\right]$ and $\mathrm{x}^{*}=\mathrm{t}_{1}$ is a zerodivisor in $\mathrm{G}_{\mathrm{A}}(\mathfrak{a})$.
Theorem 3.3. Let $\mathfrak{a}$ and $\mathfrak{b}=\left(f_{1}, \ldots, f_{r}\right)$ be ideals of the Noetherian ring A. Then the following are equivalent:
(i) $\left(f_{1}^{*}, \ldots, f_{r}^{*}\right)$ is a $G_{A}(\mathfrak{a})$-sequence;
(ii) For each $\mathfrak{i}=1, \ldots, \boldsymbol{r},\left(\mathfrak{b}_{\mathfrak{i}-1}: \mathfrak{f}_{\mathfrak{i}}\right) \subseteq \overline{\mathfrak{b}}_{\mathfrak{i}-1}$ and $\mathfrak{b}_{\mathfrak{i}} \cap \mathfrak{a}^{\mathfrak{n}}=\sum_{\mathfrak{j}=1}^{\mathfrak{i}} \mathfrak{a}^{\mathfrak{n}-\mathfrak{p}_{\mathfrak{j}}} \mathfrak{f}_{\mathfrak{j}}$ for all $\mathfrak{n} \geqslant 0$.

Proof. (i) $\Rightarrow$ (ii): By Proposition 3.1 and Theorem 2.3, it only remains to show that $\left(\mathfrak{b}_{i-1}: \mathfrak{f}_{\mathfrak{i}}\right) \subseteq \overline{\mathfrak{b}}_{\mathfrak{i}-1}$ for each $\mathfrak{i}=1, \ldots, r$. Let $a \in\left(\mathfrak{b}_{i-1}: f_{i}\right)$ with $v(a)=\mathfrak{n}$. Either $a^{*} f_{i}{ }^{*}=0$ or $a^{*} f_{i}{ }^{*}=\left(a f_{i}\right)^{*}$. In both cases, we have $a^{*} f_{i}^{*} \in\left(\mathfrak{b}_{i-1}\right)^{*}=\left(f_{1}^{*}, \ldots, f_{i-1}^{*}\right)$; hence

[^0]$a^{*} \in\left(\mathfrak{b}_{i-1}\right)^{*}$. This implies $a \in \mathfrak{b}_{i-1}+\mathfrak{a}^{n+1} \cap\left(\mathfrak{b}_{i-1}: f_{i}\right)$ and hence we can write $a=x+a^{\prime}$ for some $x \in \mathfrak{b}_{i-1}$ and $\mathfrak{a}^{\prime} \in \mathfrak{a}^{n+1} \cap\left(\mathfrak{b}_{i-1}: \mathfrak{f}_{\mathfrak{i}}\right)$ with $v\left(\mathfrak{a}^{\prime}\right)=\mathrm{t} \geqslant \mathrm{n}+1$. Now repeating the argument, one can show $\mathfrak{a}^{\prime} \in \mathfrak{b}_{\mathfrak{i}-1}+\mathfrak{a}^{\mathfrak{t}+1} \cap\left(\mathfrak{b}_{i-1}: f_{i}\right) \subseteq \mathfrak{b}_{i-1}+\mathfrak{a}^{\mathfrak{n + 2}} \cap\left(\mathfrak{b}_{\mathfrak{i}-1}: \mathfrak{f}_{\mathfrak{i}}\right)$ and so on. Hence $\boldsymbol{a} \in \overline{\mathfrak{b}}_{i-1}$.
(ii) $\Rightarrow(\mathfrak{i})$ : Conversely note that $p_{i}<\infty$ for each $\mathfrak{i}=1, \ldots, r$. Indeed, suppose on the contrary that $p_{i}=\infty$ for some $\mathfrak{i} \in\{1, \ldots, r\}$. Then $f_{i} \in \bigcap_{n=1}^{\infty} \mathfrak{a}^{n}$ and by Krull's intersection theorem, there exists $\mathfrak{a} \in \mathfrak{a}$ such that $(1-\mathfrak{a}) \mathfrak{f}_{i}=0$. Thus, $(1-\mathfrak{a}) \in\left(\mathfrak{b}_{i-1}: f_{i}\right) \subseteq \overline{\mathfrak{b}}_{i-1}=$ $\bigcap_{n=1}^{\infty} \mathfrak{b}_{\mathfrak{i}-1}+\mathfrak{a}^{n}$. Now another application of Krull's intersection theorem over $\mathcal{A} / \mathfrak{b}_{i}$ yields $\mathfrak{a}^{\prime} \in \mathfrak{a}$ such that $\left(1-\mathfrak{a}^{\prime}\right)(1-\mathfrak{a}) \in \mathfrak{b}_{\mathfrak{i}-1}$. But this implies the existence of $\mathfrak{f} \in \mathfrak{a}$ and $g \in \mathfrak{b}$ such that $\mathfrak{f}+\mathrm{g}=1$, a contradiction since $\mathfrak{a}+\mathfrak{b} \neq \mathrm{A}$.

Now let $\mathfrak{a}^{*} \boldsymbol{f}_{\mathfrak{i}}^{*} \in\left(\mathfrak{f}_{1}^{*}, \ldots, f_{\mathfrak{i}-1}^{*}\right)=\left(\mathfrak{b}_{i-1}\right)^{*}$ with $v(\mathfrak{a})=\mathfrak{n}$, then $\mathfrak{a} f_{i} \in \mathfrak{b}_{i-1}+\mathfrak{a}^{n+p_{i}+1}$. Write $a f_{i}=-\sum_{\mathfrak{j}=1}^{\mathfrak{i}-1} \mathfrak{a}_{\mathfrak{j}} f_{j}+b$ with $\sum_{j=1}^{\mathfrak{i}-1} a_{j} f_{j} \in \mathfrak{b}_{\mathfrak{i}-1}$ and $b \in \mathfrak{a}^{n+p_{i}+1}$. Then $b=a f_{i}+\sum_{j=1}^{\mathfrak{i}-1} a_{j} f_{j} \in$ $\mathfrak{b}_{\mathfrak{i}} \cap \mathfrak{a}^{\mathrm{n}+\mathfrak{p}_{\mathfrak{i}}+1}$.

Since $b \in \mathfrak{b}_{i}$, we can write $b=\sum_{j=1}^{\mathfrak{i}} b_{j} f_{j}$ where each $b_{j} \in \mathfrak{a}^{n+\mathfrak{p}_{i}+1-p_{j}}$. This implies $\left(a-b_{i}\right) f_{i}=\sum_{j=1}^{\mathfrak{i}-1}\left(b_{j}-a_{j}\right) f_{j} \in \mathfrak{b}_{i-1}$, so $a-b_{i} \in\left(\mathfrak{b}_{i-1}: f_{i}\right)$ and hence $a \in\left(\mathfrak{b}_{i-1}:\right.$ $\left.\mathrm{f}_{\mathrm{i}}\right)+\mathfrak{a}^{\mathrm{n}+1} \subseteq \overline{\mathfrak{b}}_{\mathrm{i}-1}+\mathfrak{a}^{\mathrm{n}+1}$.

Hence $a \in \mathfrak{b}_{\mathfrak{i}-1} \cap \mathfrak{a}^{\mathfrak{n}}+\mathfrak{a}^{\mathfrak{n + 1}}$, which implies $\mathbf{a}^{*} \in\left(\mathfrak{b}_{i-1}\right)^{*}=\left(f_{1}^{*}, \ldots, f_{i-1}^{*}\right)$.
Corollary 3.4. Let $\mathcal{A}$ be a local ring and I , $\mathfrak{a}$ ideals of A , such that $\mathrm{I}^{*}$ is generated by a $\mathrm{G}_{\mathrm{A}}(\mathfrak{a})$-sequence. Then I is generated by an A -sequence.

Proof. Let $I^{*}$ be generated by a $G_{A}(\mathfrak{a})$-sequence: $g_{1}, \ldots, g_{r}$, hence grade $\left(I^{*}\right)=r$. Given all minimal generating sets of $I^{*}$ have the same cardinality, one can write $I^{*}=\left(f_{1}^{*}, \ldots, f_{r}^{*}\right)$ with $f_{i} \in I$. Since $I^{*}$ contains a $G_{A}(\mathfrak{a})$-sequence of length $r$ and $G_{A}(\mathfrak{a})$ is graded-local since $\mathcal{A}$ is local, it follows that $f_{1}^{*}, \ldots, f_{r}^{*}$ is a $G_{A}(\mathfrak{a})$-sequence (see [2], Cor 17.7). Now by Theorem 3.3 and the fact $A$ is a local ring, if $a f_{i} \in\left(f_{1}, \ldots, f_{i-1}\right)=\mathfrak{b}_{i-1} \Rightarrow a \in \mathfrak{b}_{i-1}: f_{i} \subseteq \overline{\mathfrak{b}}_{i-1}=\mathfrak{b}_{i-1}$, hence $f_{1}, \ldots, f_{r}$ is an $A$-sequence.

Finally, since $I^{*}=\left(f_{1}^{*}, \ldots, f_{r}^{*}\right)$, we have

$$
I \cap \mathfrak{a}^{n} \subseteq \sum_{i=1}^{r} \mathfrak{a}^{n-p_{i}} f_{i}+\mathfrak{a}^{n+1} \subseteq\left(f_{1}, \ldots, f_{r}\right)+\mathfrak{a}^{n+1}
$$

for all $n \geqslant 0$. In particular, the $n=0$ case shows us that $I \subseteq\left(f_{1}, \ldots, f_{r}\right)+\mathfrak{a}$ and intersecting both sides with $I$ gives $I \subseteq\left(f_{1}, \ldots, f_{r}\right)+\mathfrak{a} \cap I \subseteq\left(f_{1}, \ldots, f_{r}\right)+\mathfrak{a}^{2}$. Repeating the argument, we see that $I \subseteq \overline{\left(f_{1}, \ldots, f_{r}\right)}=\left(f_{1}, \ldots, f_{r}\right)$. But $\left(f_{1}, \ldots, f_{r}\right) \subseteq I$, so $I$ is generated by the A-sequence $f_{1}, \ldots, f_{r}$.

Remark 3.5. If $f_{1}^{*}, \ldots, f_{r}^{*}$ is a $G_{A}(\mathfrak{a})$-sequence, it is not necessarily true that $f_{1}, \ldots, f_{r}$ form an $\mathcal{A}$-sequence unless $\mathrm{I}=\overline{\mathrm{I}}$ for every ideal I contained in $\mathfrak{b}$. For example, let $\mathcal{A}=$ $k[x, y, z]=k[X, Y, Z] /(X Z, X-X Y), \mathfrak{a}=(y), f=y z$, then since $y$ is a nonzerodivisor in $A$, we have: $G_{A}(\mathfrak{a})=(A / a)[T]=k[Z, T]$, which is a domain. Hence the initial form of $f$ is a nonzerodivisor in $G_{A}(\mathfrak{a})$, however $\chi f=0$.

Proposition 3.6. Let $\mathfrak{a}$ and $\mathfrak{b}=\left(\mathrm{f}_{1}, \ldots, \mathrm{f}_{\mathrm{r}}\right)$ be two ideals of A such that $\mathrm{f}_{1}, \ldots, \mathrm{f}_{\mathrm{r}}$ is an A-sequence and $\mathfrak{a}^{\mathfrak{n}} \cap \mathfrak{b}=\sum_{\mathfrak{i}=1}^{\mathfrak{r}} \mathfrak{a}^{\mathfrak{n}-\mathfrak{p}_{\mathfrak{i}}} \mathfrak{f}_{\mathfrak{i}}$ for all $\mathfrak{n} \geqslant 0$. Suppose either $\mathfrak{b} \subseteq \mathfrak{a}$ or $\mathcal{A}$ is local.

Then $\mathfrak{a}^{\mathfrak{n}} \cap \mathfrak{b}_{\mathfrak{i}}=\sum_{\mathfrak{j}=1}^{\mathfrak{i}} \mathfrak{a}^{\mathfrak{n}-\mathfrak{p}_{\mathfrak{j}}} \mathfrak{f}_{\mathfrak{j}}$ for each $\mathfrak{i}=1, \ldots, \boldsymbol{r}$ and for all $\mathfrak{n} \geqslant 0$; thus $\mathfrak{f}_{1}{ }^{*}, \ldots, \mathfrak{f}_{\mathbf{r}}{ }^{*}$ is $a \mathrm{G}_{\mathrm{A}}(\mathfrak{a})$-sequence.

The following proof is taken from [3].

Proof. It is enough to show that $\mathfrak{a}^{\mathfrak{n}} \cap \mathfrak{b}_{r-1}=\sum_{\mathfrak{j}=1}^{r-1} \mathfrak{a}^{\mathfrak{n}-\mathfrak{p}_{\mathfrak{j}}} \mathfrak{f}_{\mathfrak{j}}$ for all $\mathfrak{n} \geqslant 0$ and we will prove it using induction on $n$. The case $n=0$ is trivial. For $n>0$,

$$
\begin{aligned}
& \mathfrak{a}^{n} \cap \mathfrak{b}_{r-1}=\left(\mathfrak{a}^{n} \cap \mathfrak{b}\right) \cap \mathfrak{b}_{r-1} \\
& =\left(\sum_{i=1}^{r-1} \mathfrak{a}^{n-\mathfrak{p}_{i}} \boldsymbol{f}_{i}+\mathfrak{a}^{n-\mathfrak{p}_{r}} \boldsymbol{f}_{r}\right) \cap \mathfrak{b}_{r-1} \\
& =\sum_{\mathfrak{i}=1}^{r-1} \mathfrak{a}^{n-\mathfrak{p}_{\boldsymbol{i}}} \boldsymbol{f}_{\mathfrak{i}}+\mathfrak{a}^{n-\mathfrak{p}_{r}} \mathfrak{f}_{\mathrm{r}} \cap \mathfrak{b}_{\mathrm{r}-1} .
\end{aligned}
$$

Since $f_{r}$ is a nonzerodivisor on $\mathcal{A} / \mathfrak{b}_{r-1}$, we have $\mathfrak{a}^{\mathfrak{n}-\mathfrak{p}_{r}} f_{r} \cap \mathfrak{b}_{r-1}=f_{r}\left(\mathfrak{a}^{n-\mathfrak{p}_{r}} \cap \mathfrak{b}_{r-1}\right)$. Thus,

$$
\mathfrak{a}^{\mathfrak{n}} \cap \mathfrak{b}_{r-1}=\sum_{\mathfrak{i}=1}^{\mathrm{r}-1} \mathfrak{a}^{\mathrm{n}-\mathfrak{p}_{i}} \boldsymbol{f}_{\mathfrak{i}}+\mathrm{f}_{\mathrm{r}}\left(\mathfrak{a}^{\mathfrak{n}-\mathfrak{p}_{\mathrm{r}}} \cap \mathfrak{b}_{\mathrm{r}-1}\right)
$$

If $\mathfrak{b} \subseteq \mathfrak{a}$, then $\mathfrak{p}_{\mathrm{r}} \geqslant 1$; if A is local and $\boldsymbol{p}_{\mathrm{r}}=0$, then we have

$$
\mathfrak{a}^{\mathfrak{n}} \cap \mathfrak{b}_{r-1}=\sum_{\mathfrak{i}=1}^{r-1} \mathfrak{a}^{\mathfrak{n}-\mathfrak{p}_{\mathfrak{i}}} \mathfrak{f}_{\mathfrak{i}}+\mathrm{f}_{\mathrm{r}}\left(\mathfrak{a}^{\mathfrak{n}} \cap \mathfrak{b}_{r-1}\right),
$$

so $\mathfrak{a}^{n} \cap \mathfrak{b}_{r-1}=\sum_{\mathfrak{i}=1}^{r-1} \mathfrak{a}^{n-\mathfrak{p}_{i}} \boldsymbol{f}_{\mathfrak{i}}$ by Nakayama's lemma. If $\boldsymbol{p}_{r} \geqslant 1$, then $\mathfrak{n}-\boldsymbol{p}_{r} \leqslant \boldsymbol{n}-1$, so the inductive hypothesis implies that

$$
\mathfrak{a}^{n} \cap \mathfrak{b}_{r-1}=\sum_{i=1}^{r-1} \mathfrak{a}^{n-\mathfrak{p}_{i}} f_{i}+f_{r}\left(\sum_{j=1}^{r-1} \mathfrak{a}^{n-\mathfrak{p}_{r}-\mathfrak{p}_{\mathfrak{j}}} \mathfrak{f}_{j}\right) \subseteq \sum_{i=1}^{r-1} \mathfrak{a}^{n-\mathfrak{p}_{i}} \mathfrak{f}_{\mathfrak{i}} .
$$

This completes the proof.
Corollary 3.7. Let $\mathfrak{a}$ and $\mathfrak{b}=\left(f_{1}, \ldots, f_{r}\right)$ be two ideals of a local ring $A$. Then $f_{1}{ }^{*}, \ldots, f_{r}{ }^{*}$ is a $G_{A}(\mathfrak{a})$-sequence if and only if $f_{1}, \ldots, f_{r}$ is an A-sequence and moreover $\mathfrak{a}^{n} \cap \mathfrak{b}=$ $\sum_{i=1}^{r} \mathfrak{a}^{n-\mathfrak{p}_{i}} \boldsymbol{f}_{\mathfrak{i}}$ for all $\mathfrak{n} \geqslant 0$.
Remark 3.8. Let $(A, \mathfrak{m})$ be a local ring and $z \in \mathfrak{m}-\mathfrak{m}^{2}$. The above corollary says that $z^{*}$ is a nonzerodivisor in $G_{A}(\mathfrak{m})$ if and only if $z$ is a nonzerodivisor in $A$ and $\mathfrak{m}^{\mathfrak{n}} \cap(z)=\mathfrak{m}^{\mathfrak{n}-1} z$ for all $n \geqslant 0$. This was first proved by Hironaka ([4], Proposition 6).

## 4. Applications

Proposition 4.1. Let $\mathfrak{a}$ and $\mathfrak{b}=\left(f_{1}, \ldots, f_{r}\right)$ be ideals of $\mathcal{A}$ such that $\mathfrak{b} \subseteq \mathfrak{a}, \mathfrak{f}_{1}, \ldots, f_{r}$ is an A-sequence and $\mathfrak{a b}=\mathfrak{a}^{2}$. Then the initial forms of the $\mathfrak{f}_{\mathfrak{i}}$ sform a $\mathrm{G}_{\mathrm{A}}(\mathfrak{a})$-sequence.

Proof. We will first prove that $p_{i}=1$ for all $1 \leqslant i \leqslant r$. Assume on the contrary that $f_{i} \in \mathfrak{a}^{2}=\mathfrak{a b}$. Then $f_{i}=\sum_{j=1}^{\mathfrak{r}} \mathfrak{a}_{j} f_{j}$ with $\mathfrak{a}_{\mathfrak{j}} \in \mathfrak{a}$, so $\sum_{j \neq i} a_{j} f_{j}+\left(a_{i}-1\right) f_{i}=0$. But we know that if a regular sequence $f_{1}, \ldots, f_{r}$ satisfies a homogeneous polynomial $F\left(Y_{1}, \ldots, Y_{r}\right)$, then $F$ has coefficients in the ideal $\left(f_{1}, \ldots, f_{r}\right)$. Applying this fact to our situation, we see that $\mathfrak{a}_{\mathfrak{i}}-1 \in \mathfrak{b} \subseteq \mathfrak{a}$, which contradicts the hypothesis $\mathfrak{a} \neq A$. Thus $f_{i} \notin \mathfrak{a}^{2}$, and hence $\boldsymbol{p}_{i}=1$ for all $i$.

Now by Proposition 3.6, it is enough to prove $\mathfrak{a}^{\mathfrak{n}} \cap \mathfrak{b}=\mathfrak{a}^{\mathfrak{n}-1} \mathfrak{b}$ for all $\mathfrak{n} \geqslant 0$. This is trivial for $\mathfrak{n}=0$ and $\mathfrak{n}=1$. For $\mathfrak{n} \geqslant 2$, we have $\mathfrak{a}^{\mathfrak{n}}=\mathfrak{a}^{\mathfrak{n}-1} \mathfrak{b}$, hence

$$
\mathfrak{a}^{\mathfrak{n}} \cap \mathfrak{b}=\mathfrak{a}^{\mathfrak{n}-1} \mathfrak{b} \cap \mathfrak{b}=\mathfrak{a}^{\mathfrak{n}-1} \mathfrak{b}
$$

This completes the proof.

Here is an interesting application of the above proposition: let $(A, \mathfrak{m})$ be a local CohenMacaulay ring of dimension $r$, with embedding dimension $m$ and multiplicity $e$. It is known that $m \leqslant e+r-1$ and the equality holds if and only if there exists an $A$-sequence $f_{1}, \ldots, f_{r}$ in $\mathfrak{m}$ such that $\mathfrak{m}^{2}=\mathfrak{m}\left(f_{1}, \ldots, f_{r}\right)([7]$, Theorem 1$)$. In this situation, the above proposition says that $f_{1}{ }^{*}, \ldots, f_{r}{ }^{*}$ is a $G_{A}(\mathfrak{m})$-sequence and that is enough to conclude $G_{A}(\mathfrak{m})$ is CohenMacaulay [5].
Remark 4.2. A new and simplified proof of ([9], Theorem 3.2) is obtained from the results of this paper:

Let A be a Cohen-Macaulay ring and let $\mathrm{a}_{1}, \ldots, \mathrm{a}_{\mathrm{s}}$ be a regular sequence, $\mathrm{I}=\left(\mathrm{a}_{1}, \ldots, \mathrm{a}_{\mathrm{s}}\right), \mathrm{t}$ an integer $\geqslant 1$. Then $\mathrm{G}_{\mathrm{A}}(\mathfrak{a})$ is Cohen-Macaulay if $\mathfrak{a}=\mathrm{I}^{\mathrm{t}}$.
Proof. Without loss of generality, we may assume that $(\mathcal{A}, \mathfrak{m})$ is an $r$-dimensional local ring [9]. Extend $a_{1}, \ldots, a_{s}$ to a maximal $A$-sequence $a_{1}, \ldots, a_{s}, f_{s+1}, \ldots, f_{r}$ in $\mathfrak{m}$. Let $J=\left(f_{s+1}, \ldots, f_{r}\right)$ and for $1 \leqslant i \leqslant s$, let $f_{i}=a_{i}^{t}$ and $\mathfrak{b}=\left(f_{1}, \ldots, f_{r}\right)$. Since $f_{1}, \ldots, f_{s}$ is a regular sequence on $A / J$, we have $\mathfrak{a}^{\mathfrak{n}} \cap \mathfrak{b} \subseteq \mathfrak{a}^{\mathfrak{n}-1}\left(\mathrm{f}_{1}, \ldots, \mathrm{f}_{s}\right)+\mathrm{J}$ for all $\mathrm{n} \geqslant 0$ ([9], Lemma 2.1). Since $f_{s+1}, \ldots, f_{r}$ is a regular sequence modulo $I$, hence modulo $\mathfrak{a}^{n}$ for all $n \geqslant 1$, we have $\mathfrak{a}^{n} \cap J=\mathfrak{a}^{n} J$. It then follows that $\mathfrak{a}^{n} \cap \mathfrak{b} \subseteq \mathfrak{a}^{n} \cap\left(\mathfrak{a}^{n-1}\left(f_{1}, \ldots, f_{s}\right)+J\right)=$ $\mathfrak{a}^{n-1}\left(f_{1}, \ldots, f_{s}\right)+\mathfrak{a}^{n} \cap J=\mathfrak{a}^{n-1}\left(f_{1}, \ldots, f_{s}\right)+\mathfrak{a}^{n} J$. Hence by Proposition 3.6, $f_{1}^{*}, \ldots, f_{r}^{*}$ is a $G_{A}(\mathfrak{a})$-sequence and by [5], given $\operatorname{dim} G_{A}(\mathfrak{a})=r$, it is enough to prove that $G_{A}(\mathfrak{a})$ is Cohen-Macaulay.

Example 4.3. The initial form of the same element with respect to two different ideals may or may not be a zerodivisor. For example, let $A=k \llbracket x, y, z \rrbracket=k \llbracket X, Y, Z \rrbracket /\left(X Y-Z^{2}\right)$, $\mathfrak{a}=(x, y, z)$, and $\mathrm{I}=(x, z)$. The initial form of $x$ with respect to $I$ is $x+I^{2}$ and since $\left(x+\mathrm{I}^{2}\right)(\mathrm{y}+\mathrm{I})=\mathrm{xy}+\mathrm{I}^{2}=z^{2}+\mathrm{I}^{2}=0, \mathrm{x}+\mathrm{I}^{2}$ is a zerodivisor. On the other hand, the initial form of $\mathfrak{x}$ with respect to $\mathfrak{a}$ is a nonzerodivisor.

In the following proposition, let $f^{*}$ denotes the initial form with respect to $\mathfrak{a}$ and $f^{0}$ the initial form with respect to I.

Proposition 4.4. Let $\mathrm{I} \subseteq \mathfrak{a}$ be ideals of $\mathcal{A}$ and let $\mathrm{f}_{1}, \ldots, \mathrm{f}_{\mathrm{r}}$ be elements of I such that $\boldsymbol{v}_{\mathrm{I}}\left(\mathrm{f}_{\mathfrak{i}}\right)=\boldsymbol{v}_{\mathfrak{a}}\left(\mathrm{f}_{\mathfrak{i}}\right)$ for each $\mathfrak{i}$. Assume that $\mathrm{f}_{1}^{*}, \ldots, \mathrm{f}_{\mathrm{r}}^{*}$ form $a \mathrm{G}_{\mathrm{A}}(\mathfrak{a})$-sequence. Then $\mathrm{f}_{1}^{0}, \ldots, \mathrm{f}_{r}^{0}$ form a minimal base of the ideal $\left(f_{1}^{0}, \ldots, f_{r}^{0}\right)$ of $G_{A}(I)$.
Proof. By ([1], Corollary 2.9), $f_{1}^{*}, \ldots, f_{r}^{*}$ is a $G_{A}(\mathfrak{a})$-sequence up to permutation. Given $f_{r}^{0}=\sum_{i=1}^{r-1} a_{i}^{0} f_{i}^{0}$, let $a=\sum_{i=1}^{r-1} a_{i} f_{i}$ and $p=v_{a}\left(f_{r}\right)=v_{I}\left(f_{r}\right)$. Then we can write $f_{r}=a+b$, where $\mathfrak{b} \in I^{p+1}$. Therefore $\mathfrak{a} \in \mathfrak{a}^{p}$ and $\mathfrak{a} \notin \mathfrak{a}^{\mathfrak{p}+1} ;$ it follows that $f_{r}^{*}=a^{*} \in\left(f_{1}, \ldots, f_{r-1}\right)^{*}=$ $\left(f_{1}^{*}, \ldots, f_{r-1}^{*}\right)$, a contradiction.

## References

[1] Maurice Auslander and David A. Buchsbaum, Codimension and multiplicity, Annals of Mathematics 68 (1958), 625.
[2] David Eisenbud, Commutative algebra: with a view toward algebraic geometry, Graduate Texts in Mathematics, vol. 150, Springer, New York, NY, 1995.
[3] M. Herrmann, B. Moonen, S. Ikeda, and U. Orbanz, Equimultiplicity and blowing up: An algebraic study, Springer Berlin Heidelberg, 2012.
[4] Heisuke Hironaka, Certain numerical characters of singularities, Journal of Mathematics of Kyoto University 10 (1970), no. 1, $151-187$.
[5] J. Matijevic and Paul C. Roberts, A conjecture of nagata on graded cohen-macaulay rings, Journal of Mathematics of Kyoto University 14 (1974), 125-128.
[6] Lorenzo Robbiano and Giuseppe Valla, On normal flatness and normal torsion-freeness, Journal of Algebra 43 (1976), 552-560.
[7] Judith D. Sally, On the associated graded ring of a local Cohen-Macaulay ring, Journal of Mathematics of Kyoto University 17 (1977), no. 1, $19-21$.
[8] Paolo Valabrega and Giuseppe Valla, Form rings and regular sequences, Nagoya Mathematical Journal 72 (1978), 93-101.
[9] Giuseppe Valla, Certain graded algebras are always cohen-macaulay, Journal of Algebra 42 (1976), 537-548.


[^0]:    ${ }^{1}$ Not to be confused with $\mathfrak{b}_{\mathfrak{r}-1}^{*}$, the set of homogeneous elements in $\mathfrak{b}^{*}$ of degree $\mathfrak{r}-1$, defined in earlier section.

