FORM RINGS AND REGULAR SEQUENCES

WAYNE NG KWING KING AND SREEHARI SURESH BABU

1. INTRODUCTION

The purpose of this write-up is to describe the results in the paper, Form rings and regular sequences [8], by P. Valabrega and G. Valla. In it, they study the relationship between an ideal $\mathfrak{b} = (\mathfrak{f}_1, \ldots, \mathfrak{f}_r) \subset A$ and the form ideal \mathfrak{b}^* of the associated graded ring $G_A(\mathfrak{a})$. The authors were motivated by a result of Hironaka on initial forms and they wanted to extend it to a general situation (see Remark 3.8). Hironaka's interest in these algebraic objects comes from their intimate connection with geometry. Hironaka, in his paper on the resolution of singularities over a field of characteristic 0, studied various properties of the associated graded ring to get a better understanding of singularities. We briefly describe this geometric connection now.

Let $X \subset \mathbf{A}^n$ be a variety defined by the ideal $J = (f_1, \ldots, f_r)$ and suppose that $0 \in X$. We define the tangent space to X at 0 as the variety defined by the homogeneous ideal generated by the linear forms of all $f \in J$. The tangent cone to X at 0 is a much finer invariant than the tangent space and is extremely useful when 0 is a singular point. For $f \in k[x_1, \ldots, x_n]$, let f^* denote the homogeneous component of f of the lowest degree (the leading form of f), and let J^* be the ideal generated by the leading forms of all $f \in J$. Then the tangent cone to X at 0 is the variety defined by the homogeneous ideal J^* . If R is the coordinate ring of X, then the coordinate ring of the tangent cone is the associated graded ring $G_m(R)$, where m denotes the maximal ideal (x_1, \ldots, x_n) of R (cf. Lemma 2.1).

More generally, let X be an abstract algebraic variety, x a point of X, and $(\mathcal{O}_{X,x}, \mathfrak{m})$ be the local ring of X at x. Then the tangent cone to X at x is the spectrum of the associated graded ring of $\mathcal{O}_{X,x}$ with respect to the maximal ideal: $G_{\mathfrak{m}}(\mathcal{O}) = \bigoplus_{n=0}^{\infty} \mathfrak{m}^n/\mathfrak{m}^{n+1}$.

The main theorems in the paper are the following:

- (i) A necessary and sufficient condition for the form ideal b^* to be generated by the initial forms of the generators of b (Theorem 2.3).
- (ii) A necessary and sufficient condition for b^* to be generated by a regular sequence (Theorem 3.3).

As applications of the above, we prove some results related to the Cohen-Macaulayness of $G_A(\mathfrak{a})$.

2. Form rings and ideals

Let \mathfrak{a} be an ideal of a Noetherian ring A. The form ring of A relative to \mathfrak{a} , which is denoted by $G_A(\mathfrak{a})$, is defined to be the graded A/\mathfrak{a} -algebra

$$G_A(\mathfrak{a}) = \bigoplus_{n=0}^{\infty} \frac{\mathfrak{a}^n}{\mathfrak{a}^{n+1}} = \frac{A}{\mathfrak{a}} \oplus \frac{\mathfrak{a}}{\mathfrak{a}^2} \oplus \frac{\mathfrak{a}^2}{\mathfrak{a}^3} \oplus \cdots$$

The multiplication in $G_A(\mathfrak{a})$ is defined as follows: if $\mathfrak{a} + \mathfrak{a}^{n+1} \in \mathfrak{a}^n/\mathfrak{a}^{n+1}$ and $\mathfrak{b} + \mathfrak{a}^{m+1} \in \mathfrak{a}^m/\mathfrak{a}^{m+1}$, then

$$(\mathfrak{a} + \mathfrak{a}^{n+1}) \cdot (\mathfrak{b} + \mathfrak{a}^{m+1}) := \mathfrak{a}\mathfrak{b} + \mathfrak{a}^{m+n+1} \in \mathfrak{a}^{m+n}/\mathfrak{a}^{m+n+1}.$$

This is easily seen to be independent of the choice of a and b.

Given $a \in A$, let $\nu(a)$ be the largest integer n such that $a \in \mathfrak{a}^n$. The **initial form** of a is defined to be the residue class of a in $\mathfrak{a}^{\nu(a)}/\mathfrak{a}^{\nu(a)+1}$ and is denoted by a^* . If $a \in \bigcap_{n \ge 1} \mathfrak{a}^n$, then we set $\nu(a) = \infty$ and $a^* = 0$. The map $a \mapsto a^*$ is not a homomorphism of abelian groups, but it behaves "almost" like a homomorphism. More precisely, if $a, b \in A$, then either $a^* + b^* = (a + b)^*$ or $a^* + b^* = 0$. Similarly, either $a^*b^* = (ab)^*$ or $a^*b^* = 0$.

Let \mathfrak{b} be an ideal of A. The **form ideal** of \mathfrak{b} relative to \mathfrak{a} is defined to be the homogeneous ideal of $G_A(\mathfrak{a})$ generated by all the initial forms of the elements in \mathfrak{b} and is denoted by \mathfrak{b}^* . The n-th graded component of \mathfrak{b}^* is equal to $(\mathfrak{b} \cap \mathfrak{a}^n + \mathfrak{a}^{n+1})/\mathfrak{a}^{n+1}$.

Lemma 2.1. With notations as above,

$$G_A(\mathfrak{a})/\mathfrak{b}^* \cong G_{A/\mathfrak{b}}(\mathfrak{b} + \mathfrak{a}/\mathfrak{b})$$

Proof. For us, a ring homomorphism between graded rings always means a degree-preserving map, so it is enough to prove the above isomorphism on the level of graded components. The latter follows from the following string of isomorphisms:

$$\frac{(\mathfrak{b}+\mathfrak{a}/\mathfrak{b})^n}{(\mathfrak{b}+\mathfrak{a}/\mathfrak{b})^{n+1}} \cong \frac{\mathfrak{b}+\mathfrak{a}^n}{\mathfrak{b}+\mathfrak{a}^{n+1}} = \frac{\mathfrak{b}+\mathfrak{a}^{n+1}+\mathfrak{a}^n}{\mathfrak{b}+\mathfrak{a}^{n+1}} \cong \frac{\mathfrak{a}^n}{(\mathfrak{b}+\mathfrak{a}^{n+1})\cap\mathfrak{a}^n} = \frac{\mathfrak{a}^n}{\mathfrak{b}\cap\mathfrak{a}^n+\mathfrak{a}^{n+1}}.$$

Using the above isomorphism, it is easy to see that $\mathfrak{b}^* = G_A(\mathfrak{a})$ if and only if \mathfrak{a} and \mathfrak{b} are comaximal. Thus, we will always assume that \mathfrak{a} and \mathfrak{b} are proper and are not comaximal.

If A is Noetherian, then $G_A(\mathfrak{a})$ is Noetherian. In fact, if $\mathfrak{a} = (\mathfrak{a}_1, \ldots, \mathfrak{a}_r)$ and $\alpha_i = \mathfrak{a}_i \mod \mathfrak{a}^2$, then

 $G_A(\mathfrak{a}) \cong (A/\mathfrak{a})[\alpha_1, \ldots, \alpha_r].$

In particular, \mathfrak{b}^* is a finitely generated ideal of $G_A(\mathfrak{a})$. However, \mathfrak{b}^* is generally *not* generated by the initial forms of a given set of generators of \mathfrak{b} .

Example 2.2. Let A = k[X, Y, Z], $\mathfrak{a} = (X, Y, Z)$ and $\mathfrak{b} = (XZ - Y^3, YZ - X^4, Z^2 - X^3Y^2)$. By abuse of notation, we write X, Y, Z to denote their own initial forms in $G_A(\mathfrak{a})$. Then $G_A(\mathfrak{a}) \cong k[X, Y, Z]$. Moreover, $(XZ - Y^3)^* = XZ$, $(YZ - X^4)^* = YZ$ and $(Z^2 - X^3Y^2)^* = Z^2$. However, XZ, YZ and Z^2 do not generate \mathfrak{b}^* . For example,

$$-\mathsf{Y}(\mathsf{X}\mathsf{Z}-\mathsf{Y}^3)+\mathsf{X}(\mathsf{Y}\mathsf{Z}-\mathsf{X}^4)=\mathsf{Y}^4-\mathsf{X}^5\in\mathfrak{b}$$

so $(Y^4 - X^5)^* = Y^4 \in \mathfrak{b}^*$. In fact, $\mathfrak{b}^* = (XZ, YZ, Z^2, Y^4)$.

Let $\mathfrak{b} = (f_1, \ldots, f_r)$. Notice that the n-th homogeneous component of $(f_1^*, \ldots, f_r^*) \subset G_A(\mathfrak{a})$ is equal to $(\sum_{i=1}^r \mathfrak{a}^{n-p_i} f_i + \mathfrak{a}^{n+1})/\mathfrak{a}^{n+1}$. Thus, if $\mathfrak{a}^n \cap \mathfrak{b} = \sum_{i=1}^r \mathfrak{a}^{n-p_i} f_i$, then $\mathfrak{b}_n^* = (f_1^*, \ldots, f_r^*)_n$ for all $n \ge 0$, and hence $\mathfrak{b}^* = (f_1^*, \ldots, f_r^*)$. The following theorem says that this condition is necessary as well.

Theorem 2.3. If \mathfrak{a} and $\mathfrak{b} = (f_1, \ldots, f_r)$ are ideals of A, then $\mathfrak{b}^* = (f_1^*, \ldots, f_r^*)$ in $G_A(\mathfrak{a})$ if and only if for all $\mathfrak{n} \ge 0$ the following equality holds:

$$\mathfrak{a}^n \cap \mathfrak{b} = \sum_{\substack{\mathfrak{i}=1\\2}}^r \mathfrak{a}^{n-p_\mathfrak{i}} f_\mathfrak{i},$$

where $\mathbf{p}_{\mathbf{i}} = \mathbf{v}(\mathbf{f}_{\mathbf{i}}), \, \mathbf{i} = 1, \dots, \mathbf{r}$. *Proof.* Suppose that $\mathbf{b}^* = (\mathbf{f}_1^*, \dots, \mathbf{f}_r^*)$. Then $\mathbf{b}_n^* = (\mathbf{f}_1^*, \dots, \mathbf{f}_r^*)_n$ for all $n \ge 0$, so we have $\mathbf{a}^n \cap \mathbf{b} \subset \sum_{i=1}^r \mathbf{a}^{n-p_i} \mathbf{f}_i + \mathbf{a}^{n+1}$ for all $n \ge 0$.

$$\mathfrak{a}^{n} \cap \mathfrak{b} \subseteq \sum_{i=1}^{n} \mathfrak{a}^{n-p_{i}} f_{i} + \mathfrak{a}^{n+1} \text{ for all } n \ge 0.$$

Intersecting with \mathfrak{b} , we get

$$\mathfrak{a}^{n} \cap \mathfrak{b} \subseteq (\sum_{i=1}^{r} \mathfrak{a}^{n-p_{i}} f_{i} + \mathfrak{a}^{n+1}) \cap \mathfrak{b} = \sum_{i=1}^{r} \mathfrak{a}^{n-p_{i}} f_{i} + \mathfrak{a}^{n+1} \cap \mathfrak{b}.$$

Proceeding inductively, we see that

$$\mathfrak{a}^n \cap \mathfrak{b} \subseteq \bigcap_{t \geqslant 0} \sum_{i=1}^r \mathfrak{a}^{n-p_i} f_i + \mathfrak{a}^{n+t} \cap \mathfrak{b}.$$

Now the Artin-Rees lemma guarantees the existence of an integer $q \ge 0$ such that $\mathfrak{a}^{n+t} \cap \mathfrak{b} = \mathfrak{a}^{n+t-q}(\mathfrak{a}^q \cap \mathfrak{b})$ for all $n+t \ge q$. Let $d \ge \max_{1 \le i \le r} \{n-p_i\}$. If $t \ge q-n+d$, then $n+t-q \ge d \ge n-p_i$ for each i, so

$$\mathfrak{a}^{n+t-q}(\mathfrak{a}^q \cap \mathfrak{b}) \subseteq \mathfrak{a}^d \mathfrak{b} \subseteq \sum_{i=1}^r \mathfrak{a}^{n-p_i} f_i.$$

Thus,

$$\mathfrak{a}^{\mathfrak{n}} \cap \mathfrak{b} \subseteq \bigcap_{t \geqslant q-n+d} \sum_{i=1}^{r} \mathfrak{a}^{\mathfrak{n}-p_{i}} f_{i} + \mathfrak{a}^{n+t} \cap \mathfrak{b}$$
$$= \bigcap_{t \geqslant q-n+d} \sum_{i=1}^{r} \mathfrak{a}^{\mathfrak{n}-p_{i}} f_{i} + \mathfrak{a}^{n+t-q} (\mathfrak{a}^{q} \cap \mathfrak{b}) \subseteq \sum_{i=1}^{r} \mathfrak{a}^{\mathfrak{n}-p_{i}} f_{i}.$$

The other inclusion is trivial.

Remark 2.4. If A is a local ring, the coarser relation

$$\mathfrak{a}^n \cap \mathfrak{b} \subseteq \bigcap_{t \geqslant 0} \sum_{i=1}^r \mathfrak{a}^{n-p_i} f_i + \mathfrak{a}^{n+t}$$

and Krull's intersection theorem are enough to conclude.

Let us have a quick discussion about the height of the form ideal. We remark that if $\mathfrak{a} \subseteq \mathfrak{b}$, then ht $\mathfrak{b} = \operatorname{ht} \mathfrak{b}^*$. Moreover, we have the following Krull's height theorem-type of result:

Proposition 2.5. If \mathfrak{a} and $\mathfrak{b} = (f_1, \ldots, f_r)$ are ideals of A such that $\mathfrak{a} + \mathfrak{b} \neq A$, then $ht(\mathfrak{b}^*) \leq r$.

Proof. Let \mathfrak{m} be a maximal ideal containing both \mathfrak{a} and \mathfrak{b} . An application of Krull's height theorem and it's converse gives us the inequality ht $\mathfrak{m} \leq \operatorname{ht}(\mathfrak{m}/\mathfrak{b}) + r$. Since $(\mathfrak{a}+\mathfrak{b})/\mathfrak{b} \subseteq \mathfrak{m}/\mathfrak{b}$, the height of the initial ideal $(\mathfrak{m}/\mathfrak{b})^* \subseteq G_{A/\mathfrak{b}}(\mathfrak{b}+\mathfrak{a}/\mathfrak{b})$ is the same as that of $\mathfrak{m}/\mathfrak{b}$ by the above remark. Under the natural isomorphism described in Lemma 2.1, $(\mathfrak{m}/\mathfrak{b})^*$ corresponds to the ideal $\mathfrak{m}^*/\mathfrak{b}^*$. Thus,

$$\operatorname{ht} \mathfrak{m} \leqslant \operatorname{ht}(\mathfrak{m}^*/\mathfrak{b}^*) + r \leqslant \operatorname{ht} \mathfrak{m}^* - \operatorname{ht} \mathfrak{b}^* + r = \operatorname{ht} \mathfrak{m} - \operatorname{ht} \mathfrak{b}^* + r,$$

and the desired inequality follows.

_	

Example 2.6. If in addition $ht(f_1^*, \ldots, f_r^*) = r$, then we see that $ht \mathfrak{b}^* = r$. But this does not guarantee the equality $\mathfrak{b}^* = (f_1^*, \dots, f_r^*)$. For example, let A = k[X, Y, Z]/(XZ - t) $Y^3, YZ - X^4, Z^2 - X^3Y^2) = k[x, y, z], a = (x, y, z) and b = (x).$ Using Lemma 2.1 and Example 2.2, it is easy to see that $G_A(\mathfrak{a}) \cong k[T_1, T_2, T_3]/(T_1T_3, T_2T_3, T_3^2, T_2^4) = k[t_1, t_2, t_3].$ The initial form of x corresponds to the element t_1 . We claim that $ht(t_1) = 1$. Indeed, $ht(t_1) \leq 1$ by Krull's principal ideal theorem. Next, notice that the unique minimal prime of $G_A(\mathfrak{a})$ is $(\mathfrak{t}_2,\mathfrak{t}_3)$, and since $\mathfrak{t}_1 \notin (\mathfrak{t}_2,\mathfrak{t}_3)$, $h\mathfrak{t}(\mathfrak{t}_1) = 1$. This in turn implies that $h\mathfrak{t}(\mathfrak{b}^*) = 1$. However, $y^3 \in \mathfrak{a}^3 \cap \mathfrak{b}$, but $y^3 \notin \mathfrak{a}^2 x$. Hence $\mathfrak{b}^* \neq (x^*)$ by Theorem 2.3.

3. REGULAR SEQUENCES IN $G_{A}(\mathfrak{a})$

Let A be a Noetherian ring, $\mathfrak{a} \subseteq A$ an ideal and $f_1, \ldots, f_r \in A$ such that \mathfrak{a} and (f_1, \ldots, f_r) are not comaximal. Results on necessary and sufficient conditions for f_1^*, \ldots, f_r^* to be a $G_A(\mathfrak{a})$ -sequence are looked into, especially in the case when A is local.

We fix the following notation: let $\mathfrak{b}_{\mathfrak{i}} := (\mathfrak{f}_1, \ldots, \mathfrak{f}_{\mathfrak{i}})$ for $\mathfrak{i} = 1, \ldots, \mathfrak{r}$ and $\mathfrak{b}_0 := (0)$. Furthermore, let I be the topological closure of an ideal I with respect to the a-adic topology.

Proposition 3.1. If \mathfrak{a} and $\mathfrak{b} = (f_1, \ldots, f_r)$ are ideals of A such that f_1^*, \ldots, f_r^* is a $G_A(\mathfrak{a})$ sequence, then $\mathfrak{b}^* = (f_1^*, \ldots, f_r^*)$.

Proof. We proceed by induction on r: when r = 1, $\mathfrak{b} = (f_1)$ and f_1^* is a nonzerodivisor. Therefore for every $g \in A$, we have $(gf_1)^* = g^*f_1^*$, which shows $\mathfrak{b}^* = (f_1^*)$. Suppose now that the statement is true for r-1.

Let $\mathfrak{a} \in \mathfrak{a}^n \cap \mathfrak{b}$ and let t be the largest integer such that $\mathfrak{a} \in \mathfrak{b}_{r-1} + f_r \mathfrak{a}^t$ (if such a t does not exist, set $t = \infty$). Since $a \in \mathfrak{b}_{r-1} + f_r \mathfrak{a}^t$, one can write $a = x + f_r y$ for some $x \in \mathfrak{b}_{r-1}$ and some y with $\nu(y) = t$. If $t + p_r < n$, then $f_r y \in (\mathfrak{a}^n + \mathfrak{b}_{r-1}) \cap \mathfrak{a}^{t+p_r} \subseteq (\mathfrak{a}^{t+p_r+1} + \mathfrak{b}_{r-1}) \cap \mathfrak{a}^{t+p_r} = 0$ $\mathfrak{a}^{t+p_r+1}+(\mathfrak{b}_{r-1}\cap\mathfrak{a}^{t+p_r}). \ \text{ So } f_r^*y^* \in (\mathfrak{b}_{r-1})^{*1}, \text{ and since } (\mathfrak{b}_{r-1})^*=(f_1^*,\ldots,f_{r-1}^*) \text{ by the }$ induction hypothesis, this implies $y^* \in (\mathfrak{b}_{r-1})^*$ because by assumption f_r^* is a nonzerodivisor on $G_A(\mathfrak{a})/(f_1^*,\ldots,f_{r-1}^*)$. Hence $y \in \mathfrak{b}_{r-1} \cap \mathfrak{a}^t + \mathfrak{a}^{t+1}$, which implies $\mathfrak{a} \in \mathfrak{b}_{r-1} + f_r \mathfrak{a}^{t+1}$, contradicting the maximality of t.

Therefore $t + p_r \ge n$ and $a \in (\mathfrak{b}_{r-1} + f_r \mathfrak{a}^t) \cap \mathfrak{a}^n \subseteq \mathfrak{b}_{r-1} \cap \mathfrak{a}^n + f_r \mathfrak{a}^{n-p_r} = (\sum_{i=1}^{r-1} \mathfrak{a}^{n-p_i} f_i) + (\sum_{i=1}^{r-1} \mathfrak{a}^{n-p_i} f_i) = (\sum_{i=1}^{r-1} \mathfrak{a}^{n-p_i} f_i)$ $f_r \mathfrak{a}^{n-p_r}$, where the last equality is obtained by the induction hypothesis and Theorem 2.3.

Remark 3.2. The converse of Proposition 3.1 however is false, even when A is local. Consider the following example: let A = k[X, Y]/(XY) = k[x, y], b = (x), a = (x, y); we have $\mathfrak{a}^n \cap \mathfrak{b} = (x^n, y^n) \cap (x) = (x^n) + (y^n) \cap (x) = (x^n) = \mathfrak{a}^{n-1}\mathfrak{b}$. Hence by Theorem 2.3, $\mathfrak{b}^* = (x^*)$. However $G_A(\mathfrak{a}) = k[T_1, T_2]/(T_1T_2) = k[t_1, t_2]$ and $x^* = t_1$ is a zerodivisor in $G_A(\mathfrak{a}).$

Theorem 3.3. Let \mathfrak{a} and $\mathfrak{b} = (f_1, \ldots, f_r)$ be ideals of the Noetherian ring A. Then the following are equivalent:

- (i) (f_1^*, \ldots, f_r^*) is a $G_A(\mathfrak{a})$ -sequence; (ii) For each $\mathfrak{i} = 1, \ldots, \mathfrak{r}, (\mathfrak{b}_{\mathfrak{i}-1} : f_\mathfrak{i}) \subseteq \overline{\mathfrak{b}}_{\mathfrak{i}-1}$ and $\mathfrak{b}_\mathfrak{i} \cap \mathfrak{a}^n = \sum_{j=1}^{\mathfrak{i}} \mathfrak{a}^{n-p_j} f_j$ for all $n \ge 0$.

Proof. (i) \Rightarrow (ii): By Proposition 3.1 and Theorem 2.3, it only remains to show that $(\mathfrak{b}_{i-1} : f_i) \subseteq \overline{\mathfrak{b}}_{i-1}$ for each $i = 1, \ldots, r$. Let $\mathfrak{a} \in (\mathfrak{b}_{i-1} : f_i)$ with $\nu(\mathfrak{a}) = \mathfrak{n}$. Either $a^*f_i^* = 0$ or $a^*f_i^* = (af_i)^*$. In both cases, we have $a^*f_i^* \in (\mathfrak{b}_{i-1})^* = (f_1^*, \ldots, f_{i-1}^*)$; hence

¹Not to be confused with \mathfrak{b}_{r-1}^* , the set of homogeneous elements in \mathfrak{b}^* of degree r-1, defined in earlier section.

 $a^* \in (\mathfrak{b}_{i-1})^*$. This implies $a \in \mathfrak{b}_{i-1} + \mathfrak{a}^{n+1} \cap (\mathfrak{b}_{i-1} : f_i)$ and hence we can write a = x + a' for some $x \in \mathfrak{b}_{i-1}$ and $a' \in \mathfrak{a}^{n+1} \cap (\mathfrak{b}_{i-1} : f_i)$ with $\nu(a') = t \ge n+1$. Now repeating the argument, one can show $a' \in \mathfrak{b}_{i-1} + \mathfrak{a}^{t+1} \cap (\mathfrak{b}_{i-1} : f_i) \subseteq \mathfrak{b}_{i-1} + \mathfrak{a}^{n+2} \cap (\mathfrak{b}_{i-1} : f_i)$ and so on. Hence $a \in \overline{\mathfrak{b}}_{i-1}$.

 $(ii) \Rightarrow (i)$: Conversely note that $p_i < \infty$ for each i = 1, ..., r. Indeed, suppose on the contrary that $p_i = \infty$ for some $i \in \{1, ..., r\}$. Then $f_i \in \bigcap_{n=1}^{\infty} \mathfrak{a}^n$ and by Krull's intersection theorem, there exists $\mathfrak{a} \in \mathfrak{a}$ such that $(1 - \mathfrak{a})f_i = 0$. Thus, $(1 - \mathfrak{a}) \in (\mathfrak{b}_{i-1} : f_i) \subseteq \overline{\mathfrak{b}}_{i-1} = \bigcap_{n=1}^{\infty} \mathfrak{b}_{i-1} + \mathfrak{a}^n$. Now another application of Krull's intersection theorem over A/\mathfrak{b}_i yields $\mathfrak{a}' \in \mathfrak{a}$ such that $(1 - \mathfrak{a}')(1 - \mathfrak{a}) \in \mathfrak{b}_{i-1}$. But this implies the existence of $f \in \mathfrak{a}$ and $g \in \mathfrak{b}$ such that f + g = 1, a contradiction since $\mathfrak{a} + \mathfrak{b} \neq A$.

Now let $\mathfrak{a}^* f_i^* \in (f_1^*, \dots, f_{i-1}^*) = (\mathfrak{b}_{i-1})^*$ with $\nu(\mathfrak{a}) = \mathfrak{n}$, then $\mathfrak{a} f_i \in \mathfrak{b}_{i-1} + \mathfrak{a}^{\mathfrak{n} + \mathfrak{p}_i + 1}$. Write $\mathfrak{a} f_i = -\sum_{j=1}^{i-1} \mathfrak{a}_j f_j + \mathfrak{b}$ with $\sum_{j=1}^{i-1} \mathfrak{a}_j f_j \in \mathfrak{b}_{i-1}$ and $\mathfrak{b} \in \mathfrak{a}^{\mathfrak{n} + \mathfrak{p}_i + 1}$. Then $\mathfrak{b} = \mathfrak{a} f_i + \sum_{j=1}^{i-1} \mathfrak{a}_j f_j \in \mathfrak{b}_i \cap \mathfrak{a}^{\mathfrak{n} + \mathfrak{p}_i + 1}$.

Since $b \in b_i$, we can write $b = \sum_{j=1}^{i} b_j f_j$ where each $b_j \in a^{n+p_i+1-p_j}$. This implies $(a - b_i)f_i = \sum_{j=1}^{i-1} (b_j - a_j)f_j \in b_{i-1}$, so $a - b_i \in (b_{i-1} : f_i)$ and hence $a \in (b_{i-1} : f_i) + a^{n+1} \subseteq \overline{b}_{i-1} + a^{n+1}$.

Hence $\mathbf{a} \in \mathbf{b}_{i-1} \cap \mathbf{a}^n + \mathbf{a}^{n+1}$, which implies $\mathbf{a}^* \in (\mathbf{b}_{i-1})^* = (\mathbf{f}_1^*, \dots, \mathbf{f}_{i-1}^*)$.

Corollary 3.4. Let A be a local ring and I, \mathfrak{a} ideals of A, such that I^{*} is generated by a $G_A(\mathfrak{a})$ -sequence. Then I is generated by an A-sequence.

Proof. Let I^{*} be generated by a $G_A(\mathfrak{a})$ -sequence: g_1, \ldots, g_r , hence grade $(I^*) = r$. Given all minimal generating sets of I^{*} have the same cardinality, one can write $I^* = (f_1^*, \ldots, f_r^*)$ with $f_i \in I$. Since I^{*} contains a $G_A(\mathfrak{a})$ -sequence of length r and $G_A(\mathfrak{a})$ is graded-local since A is local, it follows that f_1^*, \ldots, f_r^* is a $G_A(\mathfrak{a})$ -sequence (see [2], Cor 17.7). Now by Theorem 3.3 and the fact A is a local ring, if $\mathfrak{a}f_i \in (f_1, \ldots, f_{i-1}) = \mathfrak{b}_{i-1} \Rightarrow \mathfrak{a} \in \mathfrak{b}_{i-1} : f_i \subseteq \overline{\mathfrak{b}}_{i-1} = \mathfrak{b}_{i-1}$, hence f_1, \ldots, f_r is an A-sequence.

Finally, since $I^* = (f_1^*, \ldots, f_r^*)$, we have

$$I \cap \mathfrak{a}^{\mathfrak{n}} \subseteq \sum_{i=1}^{r} \mathfrak{a}^{\mathfrak{n}-\mathfrak{p}_{i}} f_{i} + \mathfrak{a}^{\mathfrak{n}+1} \subseteq (f_{1}, \dots, f_{r}) + \mathfrak{a}^{\mathfrak{n}+1}$$

for all $n \ge 0$. In particular, the n = 0 case shows us that $I \subseteq (f_1, \ldots, f_r) + \mathfrak{a}$ and intersecting both sides with I gives $I \subseteq (f_1, \ldots, f_r) + \mathfrak{a} \cap I \subseteq (f_1, \ldots, f_r) + \mathfrak{a}^2$. Repeating the argument, we see that $I \subseteq \overline{(f_1, \ldots, f_r)} = (f_1, \ldots, f_r)$. But $(f_1, \ldots, f_r) \subseteq I$, so I is generated by the A-sequence f_1, \ldots, f_r .

Remark 3.5. If f_1^*, \ldots, f_r^* is a $G_A(\mathfrak{a})$ -sequence, it is not necessarily true that f_1, \ldots, f_r form an A-sequence unless $I = \overline{I}$ for every ideal I contained in \mathfrak{b} . For example, let A = k[x, y, z] = k[X, Y, Z]/(XZ, X - XY), $\mathfrak{a} = (y)$, f = yz, then since y is a nonzerodivisor in A, we have: $G_A(\mathfrak{a}) = (A/\mathfrak{a})[T] = k[Z, T]$, which is a domain. Hence the initial form of f is a nonzerodivisor in $G_A(\mathfrak{a})$, however xf = 0.

Proposition 3.6. Let \mathfrak{a} and $\mathfrak{b} = (f_1, \ldots, f_r)$ be two ideals of A such that f_1, \ldots, f_r is an A-sequence and $\mathfrak{a}^n \cap \mathfrak{b} = \sum_{i=1}^r \mathfrak{a}^{n-p_i} f_i$ for all $n \ge 0$. Suppose either $\mathfrak{b} \subseteq \mathfrak{a}$ or A is local.

Then $\mathfrak{a}^{n} \cap \mathfrak{b}_{\mathfrak{i}} = \sum_{\mathfrak{j}=1}^{\mathfrak{i}} \mathfrak{a}^{n-\mathfrak{p}_{\mathfrak{j}}} \mathfrak{f}_{\mathfrak{j}}$ for each $\mathfrak{i} = 1, \ldots, \mathfrak{r}$ and for all $\mathfrak{n} \ge 0$; thus $\mathfrak{f}_{1}^{*}, \ldots, \mathfrak{f}_{\mathfrak{r}}^{*}$ is a $G_{\mathcal{A}}(\mathfrak{a})$ -sequence.

The following proof is taken from [3].

Proof. It is enough to show that $\mathfrak{a}^n \cap \mathfrak{b}_{r-1} = \sum_{j=1}^{r-1} \mathfrak{a}^{n-p_j} f_j$ for all $n \ge 0$ and we will prove it using induction on \mathfrak{n} . The case $\mathfrak{n} = 0$ is trivial. For $\mathfrak{n} > 0$,

$$\begin{split} {}^{n} \cap \mathfrak{b}_{r-1} &= (\mathfrak{a}^{n} \cap \mathfrak{b}) \cap \mathfrak{b}_{r-1} \\ &= \left(\sum_{i=1}^{r-1} \mathfrak{a}^{n-p_{i}} f_{i} + \mathfrak{a}^{n-p_{r}} f_{r} \right) \cap \mathfrak{b}_{r-1} \\ &= \sum_{i=1}^{r-1} \mathfrak{a}^{n-p_{i}} f_{i} + \mathfrak{a}^{n-p_{r}} f_{r} \cap \mathfrak{b}_{r-1}. \end{split}$$

Since f_r is a nonzerodivisor on A/\mathfrak{b}_{r-1} , we have $\mathfrak{a}^{n-p_r}f_r \cap \mathfrak{b}_{r-1} = f_r(\mathfrak{a}^{n-p_r} \cap \mathfrak{b}_{r-1})$. Thus,

$$\mathfrak{a}^n \cap \mathfrak{b}_{r-1} = \sum_{\mathfrak{i}=1}^{r-1} \mathfrak{a}^{n-p_\mathfrak{i}} f_\mathfrak{i} + f_r(\mathfrak{a}^{n-p_r} \cap \mathfrak{b}_{r-1}).$$

If $\mathfrak{b} \subseteq \mathfrak{a}$, then $p_r \ge 1$; if A is local and $p_r = 0$, then we have

a

$$\mathfrak{a}^{n} \cap \mathfrak{b}_{r-1} = \sum_{\mathfrak{i}=1}^{r-1} \mathfrak{a}^{n-p_{\mathfrak{i}}} f_{\mathfrak{i}} + f_{r}(\mathfrak{a}^{n} \cap \mathfrak{b}_{r-1}),$$

so $\mathfrak{a}^n \cap \mathfrak{b}_{r-1} = \sum_{i=1}^{r-1} \mathfrak{a}^{n-p_i} f_i$ by Nakayama's lemma. If $p_r \ge 1$, then $n - p_r \le n - 1$, so the inductive hypothesis implies that

$$\mathfrak{a}^{n} \cap \mathfrak{b}_{r-1} = \sum_{i=1}^{r-1} \mathfrak{a}^{n-p_{i}} f_{i} + f_{r} \left(\sum_{j=1}^{r-1} \mathfrak{a}^{n-p_{r}-p_{j}} f_{j} \right) \subseteq \sum_{i=1}^{r-1} \mathfrak{a}^{n-p_{i}} f_{i}.$$

This completes the proof.

Corollary 3.7. Let \mathfrak{a} and $\mathfrak{b} = (f_1, \ldots, f_r)$ be two ideals of a local ring A. Then f_1^*, \ldots, f_r^* is a $G_A(\mathfrak{a})$ -sequence if and only if f_1, \ldots, f_r is an A-sequence and moreover $\mathfrak{a}^n \cap \mathfrak{b} = \sum_{i=1}^r \mathfrak{a}^{n-p_i} f_i$ for all $n \ge 0$.

Remark 3.8. Let (A, \mathfrak{m}) be a local ring and $z \in \mathfrak{m} - \mathfrak{m}^2$. The above corollary says that z^* is a nonzerodivisor in $G_A(\mathfrak{m})$ if and only if z is a nonzerodivisor in A and $\mathfrak{m}^n \cap (z) = \mathfrak{m}^{n-1}z$ for all $n \ge 0$. This was first proved by Hironaka ([4], Proposition 6).

4. Applications

Proposition 4.1. Let \mathfrak{a} and $\mathfrak{b} = (f_1, \ldots, f_r)$ be ideals of A such that $\mathfrak{b} \subseteq \mathfrak{a}, f_1, \ldots, f_r$ is an A-sequence and $\mathfrak{a}\mathfrak{b} = \mathfrak{a}^2$. Then the initial forms of the f_i s form a $G_A(\mathfrak{a})$ -sequence.

Proof. We will first prove that $p_i = 1$ for all $1 \leq i \leq r$. Assume on the contrary that $f_i \in \mathfrak{a}^2 = \mathfrak{a}\mathfrak{b}$. Then $f_i = \sum_{j=1}^r a_j f_j$ with $a_j \in \mathfrak{a}$, so $\sum_{j \neq i} a_j f_j + (a_i - 1) f_i = 0$. But we know that if a regular sequence f_1, \ldots, f_r satisfies a homogeneous polynomial $F(Y_1, \ldots, Y_r)$, then F has coefficients in the ideal (f_1, \ldots, f_r) . Applying this fact to our situation, we see that $a_i - 1 \in \mathfrak{b} \subseteq \mathfrak{a}$, which contradicts the hypothesis $\mathfrak{a} \neq A$. Thus $f_i \notin \mathfrak{a}^2$, and hence $p_i = 1$ for all i.

Now by Proposition 3.6, it is enough to prove $\mathfrak{a}^n \cap \mathfrak{b} = \mathfrak{a}^{n-1}\mathfrak{b}$ for all $n \ge 0$. This is trivial for n = 0 and n = 1. For $n \ge 2$, we have $\mathfrak{a}^n = \mathfrak{a}^{n-1}\mathfrak{b}$, hence

$$\mathfrak{a}^n \cap \mathfrak{b} = \mathfrak{a}^{n-1}\mathfrak{b} \cap \mathfrak{b} = \mathfrak{a}^{n-1}\mathfrak{b}.$$

This completes the proof.

Here is an interesting application of the above proposition: let (A, \mathfrak{m}) be a local Cohen-Macaulay ring of dimension \mathfrak{r} , with embedding dimension \mathfrak{m} and multiplicity \mathfrak{e} . It is known that $\mathfrak{m} \leq \mathfrak{e} + \mathfrak{r} - 1$ and the equality holds if and only if there exists an A-sequence f_1, \ldots, f_r in \mathfrak{m} such that $\mathfrak{m}^2 = \mathfrak{m}(f_1, \ldots, f_r)$ ([7], Theorem 1). In this situation, the above proposition says that f_1^*, \ldots, f_r^* is a $G_A(\mathfrak{m})$ -sequence and that is enough to conclude $G_A(\mathfrak{m})$ is Cohen-Macaulay [5].

Remark 4.2. A new and simplified proof of ([9], Theorem 3.2) is obtained from the results of this paper:

Let A be a Cohen-Macaulay ring and let a_1, \ldots, a_s be a regular sequence, $I = (a_1, \ldots, a_s)$, t an integer ≥ 1 . Then $G_A(\mathfrak{a})$ is Cohen-Macaulay if $\mathfrak{a} = I^t$.

Proof. Without loss of generality, we may assume that (A, m) is an r-dimensional local ring [9]. Extend a_1, \ldots, a_s to a maximal A-sequence $a_1, \ldots, a_s, f_{s+1}, \ldots, f_r$ in m. Let $J = (f_{s+1}, \ldots, f_r)$ and for $1 \leq i \leq s$, let $f_i = a_i^t$ and $b = (f_1, \ldots, f_r)$. Since f_1, \ldots, f_s is a regular sequence on A/J, we have $a^n \cap b \subseteq a^{n-1}(f_1, \ldots, f_s) + J$ for all $n \geq 0$ ([9], Lemma 2.1). Since f_{s+1}, \ldots, f_r is a regular sequence modulo I, hence modulo a^n for all $n \geq 1$, we have $a^n \cap J = a^n J$. It then follows that $a^n \cap b \subseteq a^n \cap (a^{n-1}(f_1, \ldots, f_s) + J) = a^{n-1}(f_1, \ldots, f_s) + a^n \cap J = a^{n-1}(f_1, \ldots, f_s) + a^n J$. Hence by Proposition 3.6, f_1^*, \ldots, f_r^* is a G_A(a)-sequence and by [5], given dim G_A(a) = r, it is enough to prove that G_A(a) is Cohen-Macaulay. □

Example 4.3. The initial form of the same element with respect to two different ideals may or may not be a zerodivisor. For example, let $A = k[x, y, z] = k[X, Y, Z]/(XY - Z^2)$, $\mathfrak{a} = (x, y, z)$, and I = (x, z). The initial form of x with respect to I is $x + I^2$ and since $(x + I^2)(y + I) = xy + I^2 = z^2 + I^2 = 0$, $x + I^2$ is a zerodivisor. On the other hand, the initial form of x with respect to \mathfrak{a} is a nonzerodivisor.

In the following proposition, let f^* denotes the initial form with respect to \mathfrak{a} and f^0 the initial form with respect to I.

Proposition 4.4. Let $I \subseteq \mathfrak{a}$ be ideals of A and let f_1, \ldots, f_r be elements of I such that $\nu_I(f_i) = \nu_{\mathfrak{a}}(f_i)$ for each i. Assume that f_1^*, \ldots, f_r^* form a $G_A(\mathfrak{a})$ -sequence. Then f_1^0, \ldots, f_r^0 form a minimal base of the ideal (f_1^0, \ldots, f_r^0) of $G_A(I)$.

Proof. By ([1], Corollary 2.9), f_1^*, \ldots, f_r^* is a $G_A(\mathfrak{a})$ -sequence up to permutation. Given $f_r^0 = \sum_{i=1}^{r-1} a_i^0 f_i^0$, let $\mathfrak{a} = \sum_{i=1}^{r-1} a_i f_i$ and $\mathfrak{p} = \nu_\mathfrak{a}(f_r) = \nu_I(f_r)$. Then we can write $f_r = \mathfrak{a} + \mathfrak{b}$, where $\mathfrak{b} \in I^{p+1}$. Therefore $\mathfrak{a} \in \mathfrak{a}^p$ and $\mathfrak{a} \notin \mathfrak{a}^{p+1}$; it follows that $f_r^* = \mathfrak{a}^* \in (f_1, \ldots, f_{r-1})^* = (f_1^*, \ldots, f_{r-1}^*)$, a contradiction.

References

- MAURICE AUSLANDER AND DAVID A. BUCHSBAUM, Codimension and multiplicity, Annals of Mathematics 68 (1958), 625.
- [2] DAVID EISENBUD, Commutative algebra: with a view toward algebraic geometry, Graduate Texts in Mathematics, vol. 150, Springer, New York, NY, 1995.
- [3] M. HERRMANN, B. MOONEN, S. IKEDA, AND U. ORBANZ, Equimultiplicity and blowing up: An algebraic study, Springer Berlin Heidelberg, 2012.
- [4] HEISUKE HIRONAKA, Certain numerical characters of singularities, Journal of Mathematics of Kyoto University 10 (1970), no. 1, 151 – 187.
- [5] J. MATIJEVIC AND PAUL C. ROBERTS, A conjecture of nagata on graded cohen-macaulay rings, Journal of Mathematics of Kyoto University 14 (1974), 125–128.

- [6] LORENZO ROBBIANO AND GIUSEPPE VALLA, On normal flatness and normal torsion-freeness, Journal of Algebra 43 (1976), 552–560.
- [7] JUDITH D. SALLY, On the associated graded ring of a local Cohen-Macaulay ring, Journal of Mathematics of Kyoto University 17 (1977), no. 1, 19 21.
- [8] PAOLO VALABREGA AND GIUSEPPE VALLA, Form rings and regular sequences, Nagoya Mathematical Journal 72 (1978), 93–101.
- [9] GIUSEPPE VALLA, Certain graded algebras are always cohen-macaulay, Journal of Algebra 42 (1976), 537–548.