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1. Introduction

The purpose of this write-up is to describe the results in the paper, Form rings and regular
sequences [8], by P. Valabrega and G. Valla. In it, they study the relationship between an
ideal b = (f1, . . . , fr) ⊂ A and the form ideal b∗ of the associated graded ring GA(a). The
authors were motivated by a result of Hironaka on initial forms and they wanted to extend it
to a general situation (see Remark 3.8). Hironaka’s interest in these algebraic objects comes
from their intimate connection with geometry. Hironaka, in his paper on the resolution
of singularities over a field of characteristic 0, studied various properties of the associated
graded ring to get a better understanding of singularities. We briefly describe this geometric
connection now.

Let X ⊂ An be a variety defined by the ideal J = (f1, . . . , fr) and suppose that 0 ∈ X. We
define the tangent space to X at 0 as the variety defined by the homogeneous ideal generated
by the linear forms of all f ∈ J. The tangent cone to X at 0 is a much finer invariant than
the tangent space and is extremely useful when 0 is a singular point. For f ∈ k[x1, . . . , xn],
let f∗ denote the homogeneous component of f of the lowest degree (the leading form of f),
and let J∗ be the ideal generated by the leading forms of all f ∈ J. Then the tangent cone
to X at 0 is the variety defined by the homogeneous ideal J∗. If R is the coordinate ring of
X, then the coordinate ring of the tangent cone is the associated graded ring Gm(R), where
m denotes the maximal ideal (x1, . . . , xn) of R (cf. Lemma 2.1).

More generally, let X be an abstract algebraic variety, x a point of X, and (OX,x,m) be
the local ring of X at x. Then the tangent cone to X at x is the spectrum of the associated
graded ring of OX,x with respect to the maximal ideal: Gm(O) =

⊕∞
n=0m

n/mn+1.
The main theorems in the paper are the following:

(i) A necessary and sufficient condition for the form ideal b∗ to be generated by the
initial forms of the generators of b (Theorem 2.3).

(ii) A necessary and sufficient condition for b∗ to be generated by a regular sequence
(Theorem 3.3).

As applications of the above, we prove some results related to the Cohen-Macaulayness of
GA(a).

2. Form rings and ideals

Let a be an ideal of a Noetherian ring A. The form ring of A relative to a, which is
denoted by GA(a), is defined to be the graded A/a-algebra

GA(a) =

∞⊕
n=0

an

an+1
=

A

a
⊕ a

a2
⊕ a2

a3
⊕ · · · .
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The multiplication in GA(a) is defined as follows: if a + an+1 ∈ an/an+1 and b + am+1 ∈
am/am+1, then

(a+ an+1) · (b+ am+1) := ab+ am+n+1 ∈ am+n/am+n+1.

This is easily seen to be independent of the choice of a and b.
Given a ∈ A, let ν(a) be the largest integer n such that a ∈ an. The initial form of a

is defined to be the residue class of a in aν(a)/aν(a)+1 and is denoted by a∗. If a ∈ ∩n⩾1a
n,

then we set ν(a) = ∞ and a∗ = 0. The map a 7→ a∗ is not a homomorphism of abelian
groups, but it behaves “almost” like a homomorphism. More precisely, if a,b ∈ A, then
either a∗ + b∗ = (a+ b)∗ or a∗ + b∗ = 0. Similarly, either a∗b∗ = (ab)∗ or a∗b∗ = 0.

Let b be an ideal of A. The form ideal of b relative to a is defined to be the homogeneous
ideal of GA(a) generated by all the initial forms of the elements in b and is denoted by b∗.
The n-th graded component of b∗ is equal to (b ∩ an + an+1)/an+1.

Lemma 2.1. With notations as above,

GA(a)/b
∗ ∼= GA/b(b + a/b).

Proof. For us, a ring homomorphism between graded rings always means a degree-preserving
map, so it is enough to prove the above isomorphism on the level of graded components.
The latter follows from the following string of isomorphisms:

(b + a/b)n

(b + a/b)n+1
∼=

b + an

b + an+1
=

b + an+1 + an

b + an+1
∼=

an

(b + an+1) ∩ an
=

an

b ∩ an + an+1
.

□

Using the above isomorphism, it is easy to see that b∗ = GA(a) if and only if a and b are
comaximal. Thus, we will always assume that a and b are proper and are not comaximal.
If A is Noetherian, then GA(a) is Noetherian. In fact, if a = (a1, . . . ,ar) and αi =

ai mod a2, then
GA(a) ∼= (A/a)[α1, . . . ,αr].

In particular, b∗ is a finitely generated ideal of GA(a). However, b
∗ is generally not generated

by the initial forms of a given set of generators of b.

Example 2.2. Let A = k[[X, Y,Z]], a = (X, Y,Z) and b = (XZ − Y3, YZ − X4,Z2 − X3Y2).
By abuse of notation, we write X, Y,Z to denote their own initial forms in GA(a). Then
GA(a) ∼= k[X, Y,Z]. Moreover, (XZ− Y3)

∗
= XZ, (YZ− X4)

∗
= YZ and (Z2 − X3Y2)

∗
= Z2.

However, XZ, YZ and Z2 do not generate b∗. For example,

−Y(XZ− Y3) + X(YZ− X4) = Y4 − X5 ∈ b,

so (Y4 − X5)∗ = Y4 ∈ b∗. In fact, b∗ = (XZ, YZ,Z2, Y4).

Let b = (f1, . . . , fr). Notice that the n-th homogeneous component of (f∗1, . . . , f
∗
r) ⊂

GA(a) is equal to (
∑r

i=1 a
n−pifi + an+1) /an+1. Thus, if an ∩ b =

∑r
i=1 a

n−pifi, then
b∗n = (f∗1, . . . , f

∗
r)n for all n ⩾ 0, and hence b∗ = (f∗1, . . . , f

∗
r). The following theorem says

that this condition is necessary as well.

Theorem 2.3. If a and b = (f1, . . . , fr) are ideals of A, then b∗ = (f∗1, . . . , f
∗
r) in GA(a) if

and only if for all n ⩾ 0 the following equality holds:

an ∩ b =

r∑
i=1

an−pifi,
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where pi = ν(fi), i = 1, . . . , r.

Proof. Suppose that b∗ = (f∗1, . . . , f
∗
r). Then b∗n = (f∗1, . . . , f

∗
r)n for all n ⩾ 0, so we have

an ∩ b ⊆
r∑

i=1

an−pifi + an+1 for all n ⩾ 0.

Intersecting with b, we get

an ∩ b ⊆ (

r∑
i=1

an−pifi + an+1) ∩ b =

r∑
i=1

an−pifi + an+1 ∩ b.

Proceeding inductively, we see that

an ∩ b ⊆
⋂
t⩾0

r∑
i=1

an−pifi + an+t ∩ b.

Now the Artin-Rees lemma guarantees the existence of an integer q ⩾ 0 such that an+t∩b =
an+t−q(aq ∩ b) for all n + t ⩾ q. Let d ⩾ max1⩽i⩽r{n − pi}. If t ⩾ q − n + d, then
n+ t− q ⩾ d ⩾ n− pi for each i, so

an+t−q(aq ∩ b) ⊆ adb ⊆
r∑

i=1

an−pifi.

Thus,

an ∩ b ⊆
⋂

t⩾q−n+d

r∑
i=1

an−pifi + an+t ∩ b

=
⋂

t⩾q−n+d

r∑
i=1

an−pifi + an+t−q(aq ∩ b) ⊆
r∑

i=1

an−pifi.

The other inclusion is trivial. □

Remark 2.4. If A is a local ring, the coarser relation

an ∩ b ⊆
⋂
t⩾0

r∑
i=1

an−pifi + an+t

and Krull’s intersection theorem are enough to conclude.

Let us have a quick discussion about the height of the form ideal. We remark that if
a ⊆ b, then ht b = ht b∗. Moreover, we have the following Krull’s height theorem-type of
result:

Proposition 2.5. If a and b = (f1, . . . , fr) are ideals of A such that a + b ̸= A, then
ht(b∗) ⩽ r.

Proof. Let m be a maximal ideal containing both a and b. An application of Krull’s height
theorem and it’s converse gives us the inequality htm ⩽ ht(m/b)+r. Since (a+b)/b ⊆ m/b,
the height of the initial ideal (m/b)∗ ⊆ GA/b(b + a/b) is the same as that of m/b by the
above remark. Under the natural isomorphism described in Lemma 2.1, (m/b)∗ corresponds
to the ideal m∗/b∗. Thus,

htm ⩽ ht(m∗/b∗) + r ⩽ htm∗ − ht b∗ + r = htm− ht b∗ + r,

and the desired inequality follows. □
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Example 2.6. If in addition ht(f1
∗, . . . , fr

∗) = r, then we see that ht b∗ = r. But this
does not guarantee the equality b∗ = (f1

∗, . . . , fr
∗). For example, let A = k[[X, Y,Z]]/(XZ−

Y3, YZ − X4,Z2 − X3Y2) = k[[x,y, z]], a = (x,y, z) and b = (x). Using Lemma 2.1 and
Example 2.2, it is easy to see that GA(a) ∼= k[T1, T2, T3]/(T1T3, T2T3, T

2
3 , T

4
2 ) = k[t1, t2, t3].

The initial form of x corresponds to the element t1. We claim that ht(t1) = 1. Indeed,
ht(t1) ⩽ 1 by Krull’s principal ideal theorem. Next, notice that the unique minimal prime
of GA(a) is (t2, t3), and since t1 /∈ (t2, t3), ht(t1) = 1. This in turn implies that ht(b∗) = 1.
However, y3 ∈ a3 ∩ b, but y3 /∈ a2x. Hence b∗ ̸= (x∗) by Theorem 2.3.

3. Regular sequences in GA(a)

Let A be a Noetherian ring, a ⊆ A an ideal and f1, . . . , fr ∈ A such that a and (f1, . . . , fr)
are not comaximal. Results on necessary and sufficient conditions for f∗1, . . . , f

∗
r to be a

GA(a)-sequence are looked into, especially in the case when A is local.
We fix the following notation: let bi := (f1, . . . , fi) for i = 1, . . . , r and b0 := (0). Fur-

thermore, let Ī be the topological closure of an ideal I with respect to the a-adic topology.

Proposition 3.1. If a and b = (f1, . . . , fr) are ideals of A such that f∗1, . . . , f
∗
r is a GA(a)-

sequence, then b∗ = (f∗1, . . . , f
∗
r).

Proof. We proceed by induction on r: when r = 1, b = (f1) and f∗1 is a nonzerodivisor.
Therefore for every g ∈ A, we have (gf1)

∗ = g∗f∗1, which shows b∗ = (f∗1). Suppose now
that the statement is true for r− 1.
Let a ∈ an∩b and let t be the largest integer such that a ∈ br−1+fra

t (if such a t does not
exist, set t = ∞). Since a ∈ br−1+fra

t, one can write a = x+fry for some x ∈ br−1 and some
y with ν(y) = t. If t+pr < n, then fry ∈ (an+br−1)∩ at+pr ⊆ (at+pr+1+br−1)∩ at+pr =
at+pr+1 + (br−1 ∩ at+pr). So f∗ry

∗ ∈ (br−1)
∗1, and since (br−1)

∗ = (f∗1, . . . , f
∗
r−1) by the

induction hypothesis, this implies y∗ ∈ (br−1)
∗ because by assumption f∗r is a nonzerodivisor

on GA(a)/(f
∗
1, . . . , f

∗
r−1). Hence y ∈ br−1 ∩ at + at+1, which implies a ∈ br−1 + fra

t+1,
contradicting the maximality of t.

Therefore t+pr ⩾ n and a ∈ (br−1+fra
t)∩an ⊆ br−1∩an+fra

n−pr = (
∑r−1

i=1 a
n−pifi)+

fra
n−pr , where the last equality is obtained by the induction hypothesis and Theorem 2.3.

□

Remark 3.2. The converse of Proposition 3.1 however is false, even when A is local. Con-
sider the following example: let A = k[[X, Y]]/(XY) = k[[x,y]], b = (x), a = (x,y); we have
an ∩ b = (xn,yn) ∩ (x) = (xn) + (yn) ∩ (x) = (xn) = an−1b. Hence by Theorem 2.3,
b∗ = (x∗). However GA(a) = k[T1, T2]/(T1T2) = k[t1, t2] and x∗ = t1 is a zerodivisor in
GA(a).

Theorem 3.3. Let a and b = (f1, . . . , fr) be ideals of the Noetherian ring A. Then the
following are equivalent:

(i) (f∗1, . . . , f
∗
r) is a GA(a)-sequence;

(ii) For each i = 1, . . . , r, (bi−1 : fi) ⊆ b̄i−1 and bi ∩ an =
∑i

j=1 a
n−pjfj for all n ⩾ 0.

Proof. (i) ⇒ (ii): By Proposition 3.1 and Theorem 2.3, it only remains to show that
(bi−1 : fi) ⊆ b̄i−1 for each i = 1, . . . , r. Let a ∈ (bi−1 : fi) with ν(a) = n. Either
a∗fi

∗ = 0 or a∗fi
∗ = (afi)

∗. In both cases, we have a∗f∗i ∈ (bi−1)
∗ = (f∗1, . . . , f

∗
i−1); hence

1Not to be confused with b∗r−1, the set of homogeneous elements in b∗ of degree r − 1, defined in earlier
section.
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a∗ ∈ (bi−1)
∗. This implies a ∈ bi−1 + an+1 ∩ (bi−1 : fi) and hence we can write a = x+ a ′

for some x ∈ bi−1 and a ′ ∈ an+1 ∩ (bi−1 : fi) with ν(a ′) = t ⩾ n + 1. Now repeating the
argument, one can show a ′ ∈ bi−1 + at+1 ∩ (bi−1 : fi) ⊆ bi−1 + an+2 ∩ (bi−1 : fi) and so on.
Hence a ∈ b̄i−1.
(ii) ⇒ (i): Conversely note that pi < ∞ for each i = 1, . . . , r. Indeed, suppose on the

contrary that pi = ∞ for some i ∈ {1, . . . , r}. Then fi ∈
⋂∞

n=1 a
n and by Krull’s intersection

theorem, there exists a ∈ a such that (1 − a)fi = 0. Thus, (1 − a) ∈ (bi−1 : fi) ⊆ b̄i−1 =⋂∞
n=1 bi−1 + an. Now another application of Krull’s intersection theorem over A/bi yields

a ′ ∈ a such that (1 − a ′)(1 − a) ∈ bi−1. But this implies the existence of f ∈ a and g ∈ b
such that f+ g = 1, a contradiction since a + b ̸= A.

Now let a∗f∗i ∈ (f∗1, . . . , f
∗
i−1) = (bi−1)

∗ with ν(a) = n, then afi ∈ bi−1 + an+pi+1. Write

afi = −
∑i−1

j=1 ajfj+b with
∑i−1

j=1 ajfj ∈ bi−1 and b ∈ an+pi+1. Then b = afi+
∑i−1

j=1 ajfj ∈
bi ∩ an+pi+1.

Since b ∈ bi, we can write b =
∑i

j=1 bjfj where each bj ∈ an+pi+1−pj . This implies

(a − bi)fi =
∑i−1

j=1(bj − aj)fj ∈ bi−1, so a − bi ∈ (bi−1 : fi) and hence a ∈ (bi−1 :

fi) + an+1 ⊆ b̄i−1 + an+1.
Hence a ∈ bi−1 ∩ an + an+1, which implies a∗ ∈ (bi−1)

∗ = (f∗1, . . . , f
∗
i−1). □

Corollary 3.4. Let A be a local ring and I, a ideals of A, such that I∗ is generated by a
GA(a)-sequence. Then I is generated by an A-sequence.

Proof. Let I∗ be generated by a GA(a)-sequence: g1, . . . ,gr, hence grade (I
∗) = r. Given all

minimal generating sets of I∗ have the same cardinality, one can write I∗ = (f∗1, . . . , f
∗
r) with

fi ∈ I. Since I∗ contains a GA(a)-sequence of length r and GA(a) is graded-local since A is
local, it follows that f∗1, . . . , f

∗
r is a GA(a)-sequence (see [2], Cor 17.7). Now by Theorem 3.3

and the fact A is a local ring, if afi ∈ (f1, . . . , fi−1) = bi−1 ⇒ a ∈ bi−1 : fi ⊆ b̄i−1 = bi−1,
hence f1, . . . , fr is an A-sequence.
Finally, since I∗ = (f∗1, . . . , f

∗
r), we have

I ∩ an ⊆
r∑

i=1

an−pifi + an+1 ⊆ (f1, . . . , fr) + an+1

for all n ⩾ 0. In particular, the n = 0 case shows us that I ⊆ (f1, . . . , fr)+a and intersecting
both sides with I gives I ⊆ (f1, . . . , fr) + a ∩ I ⊆ (f1, . . . , fr) + a2. Repeating the argument,

we see that I ⊆ (f1, . . . , fr) = (f1, . . . , fr). But (f1, . . . , fr) ⊆ I, so I is generated by the
A-sequence f1, . . . , fr. □

Remark 3.5. If f∗1, . . . , f
∗
r is a GA(a)-sequence, it is not necessarily true that f1, . . . , fr

form an A-sequence unless I = Ī for every ideal I contained in b. For example, let A =
k[x,y, z] = k[X, Y,Z]/(XZ,X− XY), a = (y), f = yz, then since y is a nonzerodivisor in A,
we have: GA(a) = (A/a)[T ] = k[Z, T ], which is a domain. Hence the initial form of f is a
nonzerodivisor in GA(a), however xf = 0.

Proposition 3.6. Let a and b = (f1, . . . , fr) be two ideals of A such that f1, . . . , fr is an
A-sequence and an ∩ b =

∑r
i=1 a

n−pifi for all n ⩾ 0. Suppose either b ⊆ a or A is local.

Then an ∩ bi =
∑i

j=1 a
n−pjfj for each i = 1, . . . , r and for all n ⩾ 0; thus f1

∗, . . . , fr
∗ is

a GA(a)-sequence.

The following proof is taken from [3].
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Proof. It is enough to show that an ∩ br−1 =
∑r−1

j=1 a
n−pjfj for all n ⩾ 0 and we will prove

it using induction on n. The case n = 0 is trivial. For n > 0,

an ∩ br−1 = (an ∩ b) ∩ br−1

=

(
r−1∑
i=1

an−pifi + an−prfr

)
∩ br−1

=

r−1∑
i=1

an−pifi + an−prfr ∩ br−1.

Since fr is a nonzerodivisor on A/br−1, we have an−prfr ∩ br−1 = fr(a
n−pr ∩ br−1). Thus,

an ∩ br−1 =

r−1∑
i=1

an−pifi + fr(a
n−pr ∩ br−1).

If b ⊆ a, then pr ⩾ 1; if A is local and pr = 0, then we have

an ∩ br−1 =

r−1∑
i=1

an−pifi + fr(a
n ∩ br−1),

so an ∩ br−1 =
∑r−1

i=1 a
n−pifi by Nakayama’s lemma. If pr ⩾ 1, then n− pr ⩽ n− 1, so the

inductive hypothesis implies that

an ∩ br−1 =

r−1∑
i=1

an−pifi + fr

(
r−1∑
j=1

an−pr−pjfj

)
⊆

r−1∑
i=1

an−pifi.

This completes the proof. □

Corollary 3.7. Let a and b = (f1, . . . , fr) be two ideals of a local ring A. Then f1
∗, . . . , fr

∗

is a GA(a)-sequence if and only if f1, . . . , fr is an A-sequence and moreover an ∩ b =∑r
i=1 a

n−pifi for all n ⩾ 0.

Remark 3.8. Let (A,m) be a local ring and z ∈ m−m2. The above corollary says that z∗

is a nonzerodivisor in GA(m) if and only if z is a nonzerodivisor in A and mn∩ (z) = mn−1z
for all n ⩾ 0. This was first proved by Hironaka ([4], Proposition 6).

4. Applications

Proposition 4.1. Let a and b = (f1, . . . , fr) be ideals of A such that b ⊆ a, f1, . . . , fr is an
A-sequence and ab = a2. Then the initial forms of the fis form a GA(a)-sequence.

Proof. We will first prove that pi = 1 for all 1 ⩽ i ⩽ r. Assume on the contrary that
fi ∈ a2 = ab. Then fi =

∑r
j=1 ajfj with aj ∈ a, so

∑
j̸=i ajfj+(ai− 1)fi = 0. But we know

that if a regular sequence f1, . . . , fr satisfies a homogeneous polynomial F(Y1, . . . ,Yr), then
F has coefficients in the ideal (f1, . . . , fr). Applying this fact to our situation, we see that
ai − 1 ∈ b ⊆ a, which contradicts the hypothesis a ̸= A. Thus fi /∈ a2, and hence pi = 1 for
all i.

Now by Proposition 3.6, it is enough to prove an∩b = an−1b for all n ⩾ 0. This is trivial
for n = 0 and n = 1. For n ⩾ 2, we have an = an−1b, hence

an ∩ b = an−1b ∩ b = an−1b.

This completes the proof. □
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Here is an interesting application of the above proposition: let (A,m) be a local Cohen-
Macaulay ring of dimension r, with embedding dimension m and multiplicity e. It is known
that m ⩽ e+ r−1 and the equality holds if and only if there exists an A-sequence f1, . . . , fr
in m such that m2 = m(f1, . . . , fr) ([7], Theorem 1). In this situation, the above proposition
says that f1

∗, . . . , fr
∗ is a GA(m)-sequence and that is enough to conclude GA(m) is Cohen-

Macaulay [5].

Remark 4.2. A new and simplified proof of ([9], Theorem 3.2) is obtained from the results
of this paper:

Let A be a Cohen-Macaulay ring and let a1, . . . ,as be a regular sequence, I = (a1, . . . ,as), t
an integer ⩾ 1. Then GA(a) is Cohen-Macaulay if a = It.

Proof. Without loss of generality, we may assume that (A,m) is an r-dimensional local
ring [9]. Extend a1, . . . ,as to a maximal A-sequence a1, . . . ,as, fs+1, . . . , fr in m. Let
J = (fs+1, . . . , fr) and for 1 ⩽ i ⩽ s, let fi = at

i and b = (f1, . . . , fr). Since f1, . . . , fs
is a regular sequence on A/J, we have an ∩ b ⊆ an−1(f1, . . . , fs) + J for all n ⩾ 0 ([9],
Lemma 2.1). Since fs+1, . . . , fr is a regular sequence modulo I, hence modulo an for all
n ⩾ 1, we have an ∩ J = anJ. It then follows that an ∩ b ⊆ an ∩ (an−1(f1, . . . , fs) + J) =
an−1(f1, . . . , fs) + an ∩ J = an−1(f1, . . . , fs) + anJ. Hence by Proposition 3.6, f∗1, . . . , f

∗
r is

a GA(a)-sequence and by [5], given dimGA(a) = r, it is enough to prove that GA(a) is
Cohen-Macaulay. □

Example 4.3. The initial form of the same element with respect to two different ideals
may or may not be a zerodivisor. For example, let A = k[[x,y, z]] = k[[X, Y,Z]]/(XY − Z2),
a = (x,y, z), and I = (x, z). The initial form of x with respect to I is x + I2 and since
(x+ I2)(y+ I) = xy+ I2 = z2+ I2 = 0, x+ I2 is a zerodivisor. On the other hand, the initial
form of x with respect to a is a nonzerodivisor.

In the following proposition, let f∗ denotes the initial form with respect to a and f0 the
initial form with respect to I.

Proposition 4.4. Let I ⊆ a be ideals of A and let f1, . . . , fr be elements of I such that
νI(fi) = νa(fi) for each i. Assume that f∗1, . . . , f

∗
r form a GA(a)-sequence. Then f01, . . . , f

0
r

form a minimal base of the ideal (f01, . . . , f
0
r) of GA(I).

Proof. By ([1], Corollary 2.9), f∗1, . . . , f
∗
r is a GA(a)-sequence up to permutation. Given

f0r =
∑r−1

i=1 a
0
if

0
i , let a =

∑r−1
i=1 aifi and p = νa(fr) = νI(fr). Then we can write fr = a+b,

where b ∈ Ip+1. Therefore a ∈ ap and a /∈ ap+1; it follows that f∗r = a∗ ∈ (f1, . . . , fr−1)
∗ =

(f∗1, . . . , f
∗
r−1), a contradiction. □

References

[1] Maurice Auslander and David A. Buchsbaum, Codimension and multiplicity, Annals of Mathe-
matics 68 (1958), 625.

[2] David Eisenbud, Commutative algebra: with a view toward algebraic geometry, Graduate Texts in
Mathematics, vol. 150, Springer, New York, NY, 1995.

[3] M. Herrmann, B. Moonen, S. Ikeda, and U. Orbanz, Equimultiplicity and blowing up: An alge-
braic study, Springer Berlin Heidelberg, 2012.

[4] Heisuke Hironaka, Certain numerical characters of singularities, Journal of Mathematics of Kyoto
University 10 (1970), no. 1, 151 – 187.

[5] J. Matijevic and Paul C. Roberts, A conjecture of nagata on graded cohen-macaulay rings, Journal
of Mathematics of Kyoto University 14 (1974), 125–128.

7



[6] Lorenzo Robbiano and Giuseppe Valla, On normal flatness and normal torsion-freeness, Journal
of Algebra 43 (1976), 552–560.

[7] Judith D. Sally, On the associated graded ring of a local Cohen-Macaulay ring, Journal of Mathematics
of Kyoto University 17 (1977), no. 1, 19 – 21.

[8] Paolo Valabrega and Giuseppe Valla, Form rings and regular sequences, Nagoya Mathematical
Journal 72 (1978), 93–101.

[9] Giuseppe Valla, Certain graded algebras are always cohen-macaulay, Journal of Algebra 42 (1976),
537–548.

8


	1. Introduction
	2. Form rings and ideals
	3. Regular sequences in GA(a)
	4. Applications
	References

