FORM RINGS AND REGULAR SEQUENCES

WAYNE NG KWING KING AND SREEHARI SURESH BABU

1. INTRODUCTION

The purpose of this write-up is to describe the results in the paper, Form rings and regular
sequences (8], by P. Valabrega and G. Valla. In it, they study the relationship between an
ideal b = (fy,...,f;) C A and the form ideal b* of the associated graded ring G (a). The
authors were motivated by a result of Hironaka on initial forms and they wanted to extend it
to a general situation (see Remark 3.8). Hironaka’s interest in these algebraic objects comes
from their intimate connection with geometry. Hironaka, in his paper on the resolution
of singularities over a field of characteristic 0, studied various properties of the associated
graded ring to get a better understanding of singularities. We briefly describe this geometric
connection now.

Let X C A™ be a variety defined by the ideal | = (fy, ..., f,) and suppose that 0 € X. We
define the tangent space to X at 0 as the variety defined by the homogeneous ideal generated
by the linear forms of all f € J. The tangent cone to X at 0 is a much finer invariant than
the tangent space and is extremely useful when 0 is a singular point. For f € k[xq,...,Xnl,
let f* denote the homogeneous component of f of the lowest degree (the leading form of f),
and let J* be the ideal generated by the leading forms of all f € J. Then the tangent cone
to X at 0 is the variety defined by the homogeneous ideal J*. If R is the coordinate ring of
X, then the coordinate ring of the tangent cone is the associated graded ring G,,(R), where
m denotes the maximal ideal (xq,...,%,) of R (cf. Lemma 2.1).

More generally, let X be an abstract algebraic variety, x a point of X, and (Ox x, m) be
the local ring of X at x. Then the tangent cone to X at x is the spectrum of the associated
graded ring of Ox x with respect to the maximal ideal: G, (0) = @)_, m™/m™*1

The main theorems in the paper are the following:

(i) A necessary and sufficient condition for the form ideal b* to be generated by the
initial forms of the generators of b (Theorem 2.3).

(ii) A necessary and sufficient condition for b* to be generated by a regular sequence
(Theorem 3.3).

As applications of the above, we prove some results related to the Cohen-Macaulayness of

GA(O).

2. FORM RINGS AND IDEALS

Let a be an ideal of a Noetherian ring A. The form ring of A relative to a, which is
denoted by Ga(a), is defined to be the graded A/a-algebra

amn A a a
Gal) =P =" 5859
n=0
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The multiplication in GA(a) is defined as follows: if a + a™*! € a™/a™*! and b + a™*! €
a™/a™*! then

(C1+ Cln+1) . (b + am+1) = ab + am+n+1 c am+n/am+n+1‘

This is easily seen to be independent of the choice of a and b.

Given a € A, let v(a) be the largest integer n such that a € a™. The initial form of a
is defined to be the residue class of a in a¥(®) /a¥(@)*+1 and is denoted by a*. If a € Mn>1a™,
then we set v(a) = oo and a* = 0. The map a — a* is not a homomorphism of abelian
groups, but it behaves “almost” like a homomorphism. More precisely, if a,b € A, then
either a* +b* = (a 4+ b)* or a* + b* = 0. Similarly, either a*b* = (ab)* or a*b* = 0.

Let b be an ideal of A. The form ideal of b relative to a is defined to be the homogeneous
ideal of Ga(a) generated by all the initial forms of the elements in b and is denoted by b*.
The n-th graded component of b* is equal to (b N a™ + a™*!)/a™*1.

Lemma 2.1. With notations as above,
GA(a)/b* = GA/b(b + Cl/b)

Proof. For us, a ring homomorphism between graded rings always means a degree-preserving
map, so it is enough to prove the above isomorphism on the level of graded components.
The latter follows from the following string of isomorphisms:

(b+a/b)™ _ b4a™  b4a™ o™ _ an an

(b+a/b)"+l  b+antl b4 ant! (b +a™ ) Na™ bna" 4 antl’

g

Using the above isomorphism, it is easy to see that b* = G (a) if and only if a and b are
comaximal. Thus, we will always assume that a and b are proper and are not comaximal.
If A is Noetherian, then Ga(a) is Noetherian. In fact, if a = (a;,...,a;) and o =
a; mod a2, then
Gala) = (A/a)[x, ..., .
In particular, b* is a finitely generated ideal of G (a). However, b* is generally not generated
by the initial forms of a given set of generators of b.

Example 2.2. Let A = k[X,Y,Z], a = (X,Y,Z) and b = (XZ —Y3,YZ — X*, Z? — X3Y?).

By abuse of notation, we write X,Y,Z to denote their own initial forms in Ga(a). Then

Gala) = k[X,Y, Z]. Moreover, (XZ —Y3)" =XZ, (YZ—X")" =YZ and (2> — X?Y?)" = Z2.

However, XZ,YZ and Z? do not generate b*. For example,
—YXZ-Y3)+X(YZ-XY)=Y'=X® € b,

so (YA —=X?)* =Y* € b*. In fact, b* = (XZ,YZ,Z2,Y4).

Let b = (fy,...,f.). Notice that the n-th homogeneous component of (f},... f:) C
Gal(a) is equal to (>_i_,a™ Pifi+a™!) /a™™!. Thus, if a® Nb = > i, a™ Pif;, then
by = (f],...,f5)n for all n > 0, and hence b* = (f],...,f:). The following theorem says
that this condition is necessary as well.

Theorem 2.3. Ifa and b = (fy,...,f;) are ideals of A, then b* = (f],... f}) in Ga(a) if
and only if for allm > 0 the following equality holds:

T
aNb = Z Cln_pifi,
i=1
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where py =v(fi), i=1,... 1.
Proof. Suppose that b* = (f7,...,f}). Then b} = (f},..., f¥), for all n > 0, so we have

a"NbC Z a™ Pif, 4+ g™ for all m > 0.
i=1

Intersecting with b, we get

r T
STITE) S RIS SRR
i=1 i=1

Proceeding inductively, we see that

T
a"NbC ﬂ Z a™Pif, + a™ Tt N b,
20 i=1

Now the Artin-Rees lemma guarantees the existence of an integer g > 0 such that a™**Nb =
a9 (@inb) foral n+t > q. Let d > maxicicv{n —pi}. Ift > q—n+d, then
n+t—q>d>n-—p; for each i, so

A" 9@t nb) Calb C ) at P

i=1
Thus,
N
a*NbC ﬂ Z a™ Pif, +a™tNb
t>2q—n+d i=1
T T
= ﬂ Z aV T Pif a9 (a9 N k) C Z a Pify.
t>2g-—m+di=1 i=1
The other inclusion is trivial. O

Remark 2.4. If A is a local ring, the coarser relation

a*NbC ﬂ Z a™ Pif, 4 gntt
20 i=1
and Krull’s intersection theorem are enough to conclude.
Let us have a quick discussion about the height of the form ideal. We remark that if
a C b, then ht b = ht b*. Moreover, we have the following Krull’s height theorem-type of
result:

Proposition 2.5. If a and b = (f1,...,f.) are ideals of A such that a + b % A, then
ht(b*) < 7.

Proof. Let m be a maximal ideal containing both a and b. An application of Krull’s height
theorem and it’s converse gives us the inequality ht m < ht(m/b)+r. Since (a+b)/b C m/b,
the height of the initial ideal (m/b)* C Ga/p(b + a/b) is the same as that of m/b by the
above remark. Under the natural isomorphism described in Lemma 2.1, (m/b)* corresponds
to the ideal m*/b*. Thus,

htm < ht(m*/b*) +r < htm* —htb* +r=htm —htb* 4+,
and the desired inequality follows. O



Example 2.6. If in addition ht(f*,...,f,”) = r, then we see that ht b* = r. But this
does not guarantee the equality b* = (f1*, ..., f."). For example, let A =k[X,Y, Z]/(XZ —
Y3, YZ — X472 — X3Y?) = k[x,y,z], a = (x,y,z) and b = (x). Using Lemma 2.1 and
Example 2.2, it is easy to see that Ga(a) = k[Ty, To, T31/(Ti T3, To T3, T2, T)) = klty, t, t3].
The initial form of x corresponds to the element t;. We claim that ht(t;) = 1. Indeed,
ht(t;) < 1 by Krull’s principal ideal theorem. Next, notice that the unique minimal prime
of Ga(a) is (to, t3), and since t; € (to, t3), ht(t;) = 1. This in turn implies that ht(b*) = 1.
However, y® € a® N b, but y® ¢ a’x. Hence b* # (x*) by Theorem 2.3.

3. REGULAR SEQUENCES IN Ga(a)

Let A be a Noetherian ring, a C A an ideal and fy, ..., f, € A such that a and (f,...,f;)
are not comaximal. Results on necessary and sufficient conditions for fi,...,f: to be a
Ga (a)-sequence are looked into, especially in the case when A is local.

We fix the following notation: let b; := (fy,...,f;) fori =1,...,v and by := (0). Fur-
thermore, let I be the topological closure of an ideal I with respect to the a-adic topology.

Proposition 3.1. If a and b = (fy,...,f.) are ideals of A such that f},...,f} is a Ga(a)-
sequence, then b* = (f],... f5).

Proof. We proceed by induction on r: when r = 1, b = (f;) and f] is a nonzerodivisor.
Therefore for every g € A, we have (gf;)" = g*ff, which shows b* = (f}). Suppose now
that the statement is true for r — 1.

Let a € a™Nb and let t be the largest integer such that a € b,_;+f,a® (if such a t does not
exist, set t = 00). Since a € b,_;+f.a*, one can write a = x+f,y for some x € b, _; and some
ywithv(y)=t. If t+p, <n, then f,y € (a™+b,_;)Nat™ C (a*™PrFl4p._)Nat™Pr =
at™Pr (b, Nat™Pr). So fry* € (b,_1)™', and since (b,_1)" = (f,...,f* ) by the
induction hypothesis, this implies y* € (b,_1)" because by assumption f# is a nonzerodivisor
on Ga(a)/(f;,...,f5 ;). Hencey € b, Na'+ a'™ which implies a € b, ; + frat™!
contradicting the maximality of t.

Therefore t+p, > nand a € (b, 1+f.a')Na™ C b,_Na™+f.a™ Pr = (Z{;ll a Pify)+
f.a™ Pr where the last equality is obtained by the induction hypothesis and Theorem 2.3.

O

Remark 3.2. The converse of Proposition 3.1 however is false, even when A is local. Con-
sider the following example: let A = k[X,Y]/(XY) = k[x,yl, b = (x), a = (x,y); we have
a*nNb = (x"y" ) NKx = ")+ y")N(x) = (x") = a™'b. Hence by Theorem 2.3,
b* = (x*). However Ga(a) = k[T, To]/(TiTo) = k[ty, ta] and x* = t; is a zerodivisor in
GA(a).

Theorem 3.3. Let a and b = (f1,...,f.) be ideals of the Noetherian ring A. Then the
following are equivalent:

(i) (fy,...,f5) is a Ga(a)-sequence;

(i) For eachi=1,...,7,(bi_1:f;) Cbi_, and by Na™ = Z}Zl a™Pify for allm > 0.

Proof. (i) = (ii): By Proposition 3.1 and Theorem 2.3, it only remains to show that
(by_q : fy) € by_q for each i = 1,...,r. Let a € (by_; : f;) with v(a) = n. Either
a*fi* =0 or a*f;" = (af;)". In both cases, we have a*ff € (b;_y)" = (f},...,ff_,); hence

INot to be confused with b*_, the set of homogeneous elements in b* of degree r — 1, defined in earlier
section.
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a* € (b;_1)". This implies a € b;_; +a™"' N (bj_; : f;) and hence we can write a = x + a’
for some x € b;_; and a’ € a™' N (bi_; : f;) with v(a’) =t > n+ 1. Now repeating the
argument, one can show a’ € bj_; +at™t N (bi_1 : fi) C bi_ +a™ 2N (b;_; : fi) and so on.
Hence a € bj_;.

(i) = (i): Conversely note that p; < oo for each i = 1,...,r. Indeed, suppose on the
contrary that p; = oo for some i € {1,...,r}. Then f; € ()>_, a™ and by Krull’s intersection
theorem, there exists a € a such that (1 — a)f; = 0. Thus, (1—a) € (bi_; : fi) C by =
Mo, bi_1 + a™. Now another application of Krull’s intersection theorem over A/b; yields
a’ € a such that (1 —a’)(1 — a) € b;_;. But this implies the existence of f € a and g € b
such that f + g =1, a contradiction since a + b # A.

Now let a*ff € (f,...,f7 ;) = (bi_1)" with v(a) =n, then af; € b;_; + a™"Pitl Write
lei = — Z;;i ajfj +b with Z;;i a]-fj € bi—l and b € Cln+pi+1. Then b = afl—l-z):} Cljf]' €
bi N an+pi+1.

Since b € by, we can write b = 3 ;_, b;f; where each b; € a™*Pi*!17Pi. This implies

(a — by)f; = Z}:(bj — a;)fj € bi_y, so a—b; € (b : fi) and hence a € (b;_; :

Hence a € b;_; Na™ + a™"! which implies a* € (b; 1)" = (f},...,fI_|). O

) Pi—1

Corollary 3.4. Let A be a local ring and 1, a ideals of A, such that I* is generated by a
Ga(a)-sequence. Then 1 is generated by an A-sequence.

Proof. Let I* be generated by a Ga(a)-sequence: gy, ..., gr, hence grade (I*) = r. Given all
minimal generating sets of I* have the same cardinality, one can write [I* = (], ..., f¥) with
fi € I. Since I* contains a G (a)-sequence of length r and G (a) is graded-local since A is
local, it follows that f, ..., 5 is a Ga(a)-sequence (see [2], Cor 17.7). Now by Theorem 3.3
and the fact A is a local ring, if af; € (f1,...,fi_ 1) =bi_ 1 = a€b;_:f; C biq = by,
hence fq,...,f, is an A-sequence.

Finally, since I* = (f],...,f}), we have

INna™C Z a™ Pif Fa™tt C(fy, . ) Fa !
i=1
for all m > 0. In particular, the n = 0 case shows us that I C (fy,...,f,)+a and intersecting
both sides with I gives I C (fi,...,f.) +an1C (f1,...,f.) + a®. Repeating the argument,
we see that I C (fy,...,f.) = (fy,...,f:). But (f,...,f;) C I, so I is generated by the
A-sequence fq, ..., ;. U

Remark 3.5. If f],... f} is a Ga(a)-sequence, it is not necessarily true that fi,...,f,

ror

form an A-sequence unless I = I for every ideal I contained in b. For example, let A =
kix,y,z] = k[X,Y, Z]/(XZ,X — XY), a = (y), f =yz, then since y is a nonzerodivisor in A,
we have: Ga(a) = (A/a)[T] = k[Z, T], which is a domain. Hence the initial form of f is a
nonzerodivisor in Ga (a), however xf = 0.

Proposition 3.6. Let a and b = (f1,...,f,) be two ideals of A such that fy,...,f. is an
A-sequence and a™ nb= S i a™Pif for allm > 0. Suppose either b C a or A is local.

Then a™ N by = Z}:l a™~Pif; for each i =1,...,7v and for allm > 0; thus f,",... f." is
a G (a)-sequence.

The following proof is taken from [3].



Proof. Tt is enough to show that a™ Nb,_; = Z]:ll a™ Pif; for all n > 0 and we will prove
it using induction on n. The case n = 0 is trivial. For n > 0,

a™ N brfl = (ClTl N b) N brfl

r—1
= (Z a" P+ a“PffT> Nb,_;

i=1
r—1
=Y VP am P b
i=1
Since f, is a nonzerodivisor on A/b,_q, we have a™ P f. Nb,_; = f.(a™ P Nb,_;). Thus,
r—1
BT S T )
i=1
If b C a, then p, > 1; if A is local and p, = 0, then we have
r—1
A" Nb,_p =) a4 (at b)),
i=1
soa™Nb,_; = Z:;ll a™Pif; by Nakayama’s lemma. If p, > 1, then n —p, <n—1, so the
inductive hypothesis implies that

r—1 r—1

r—1
BTSN e (Z an—vr—mfj> CY anr,
j=1

i=1 i=1
This completes the proof. U
Corollary 3.7. Let a and b = (fy,...,f,) be two ideals of a local ring A. Then f*,... .
is a Gala)-sequence if and only if f1,...,f. is an A-sequence and moreover a™ Nb =

Zir:1 a™ Pif; for allm > 0.

Remark 3.8. Let (A, m) be a local ring and z € m —m?. The above corollary says that z*
is a nonzerodivisor in G (m) if and only if z is a nonzerodivisor in A and m™ N (z) = m™" 1z
for all n > 0. This was first proved by Hironaka ([4], Proposition 6).

4. APPLICATIONS

Proposition 4.1. Let a and b = (f,...,f;) be ideals of A such that b C a, f1,...,f. is an
A-sequence and ab = a®. Then the initial forms of the fis form a Ga(a)-sequence.

Proof. We will first prove that p; = 1 for all 1 < i < r. Assume on the contrary that
fi € a? = ab. Then fi = erzl Cljfj with a; € a, so Z)’;éi (ljfj + (a;—1)f; = 0. But we know
that if a regular sequence fq, ..., f,. satisfies a homogeneous polynomial F(Yy,...,Y;), then
F has coefficients in the ideal (fq,...,f.). Applying this fact to our situation, we see that
a;—1 € b C a, which contradicts the hypothesis a # A. Thus f; € a2, and hence p; = 1 for
all 1.

Now by Proposition 3.6, it is enough to prove a®Nb = a™ b for all m > 0. This is trivial
forn =0 and n = 1. For n > 2, we have a™ = a™!b, hence

a*Nb=a"tbnb=a""lb.

This completes the proof. O



Here is an interesting application of the above proposition: let (A, m) be a local Cohen-
Macaulay ring of dimension 1, with embedding dimension m and multiplicity e. It is known
that m < e+7r—1 and the equality holds if and only if there exists an A-sequence fy,...,f;,

in m such that m? = m(fy,...,f.) ([7], Theorem 1). In this situation, the above proposition
says that f1*,...,f." is a Ga(m)-sequence and that is enough to conclude G (m) is Cohen-
Macaulay [5].

Remark 4.2. A new and simplified proof of ([9], Theorem 3.2) is obtained from the results
of this paper:

Let A be a Cohen-Macaulay ring and let ay, . . ., as be a reqular sequence, I = (aq,...,as),t
an integer > 1. Then Ga(a) is Cohen-Macaulay if a = T*.

Proof. Without loss of generality, we may assume that (A,m) is an r-dimensional local
ring [9]. Extend aj,...,as to a maximal A-sequence ai,...,as,fsyq,...,fr in m. Let
] = (fs41,...,fr) and for 1 < i <'s, let f; = al and b = (fy,...,f;). Since fy,...,fq
is a regular sequence on A/J, we have a® N'b C a™ !(f,....fs) +J for all n > 0 ([9],

Lemma 2.1). Since fsyq,...,f; is a regular sequence modulo I, hence modulo a“ for all
n > 1, we have a® N ] = a™J. It then follows that a® Nb C a™ N (a™L(fy, ..., f) +]) =
at (.. fs) +a™ N = a1 (fy,...,fs) +a™]. Hence by Proposition 3.6, f},... {5 is
a Ga(a)-sequence and by [5], given dim Ga(a) = 7, it is enough to prove that G Ala) is
Cohen-Macaulay. U

Example 4.3. The initial form of the same element with respect to two different ideals
may or may not be a zerodivisor. For example, let A = k[x,y,z] = k[X,Y, Z] /(XY — Z?),
a = (x,y,z), and I = (x,z). The initial form of x with respect to I is x + I? and since
(x+I2)(y+1I) =xy+1>=22+1* =0, x+ I? is a zerodivisor. On the other hand, the initial
form of x with respect to a is a nonzerodivisor.

In the following proposition, let f* denotes the initial form with respect to a and f° the
initial form with respect to I.

Proposition 4.4. Let I C a be ideals of A and let fi,...,f. be elements of 1 such that
vi(fi) = va(fi) for each i. Assume that f5,... 5 form a Ga(a)-sequence. Then f9,... 0
form a minimal base of the ideal (2,... %) of Ga(I).

Proof. By ([1], Corollary 2.9), fi,...,fs is a Ga(a)-sequence up to permutation. Given

»hT

f0=35 1 1a% let a =3 1" aifi and p = vo(f,) = vi(f,). Then we can write f, = a+Db,

1

where b € IP™!. Therefore a € aP and a € aP™!; it follows that ff = a* € (fy,...,f, 1) =
(fy,...,f* ), a contradiction. O
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